
OpenBSD Frequently Asked Questions

Language: en [teams]
cs de fr nl pl

Other Documents
 Upgrade Guide
 Following -current
 Following -stable
 Port Testing Guide
 Using AnonCVS
 Using CVSup
 Manual pages
 Bug Reporting
 Mailing lists
 PF User's Guide
 OpenSSH FAQ

PDF files
 OpenBSD FAQ
 PF User's Guide

Text files
 OpenBSD FAQ
 PF User's Guide

Back to OpenBSD

Documentation and Frequently
Asked Questions

Commonly Encountered Issues Recent updates

This FAQ is supplemental documentation to the man pages, available both
in the installed system and online. The FAQ covers the active release of
OpenBSD, currently v4.4. There are likely features and changes to features
in the development version (-current) of OpenBSD that are not covered in
this FAQ.

The FAQ in PDF and plain text form is available in the pub/OpenBSD/
doc directory from many FTP mirrors, along with archival versions.

1 - Introduction to OpenBSD

● 1.1 - What is OpenBSD?
● 1.2 - On what systems does OpenBSD run?
● 1.3 - Is OpenBSD really free?
● 1.4 - Why might I want to use OpenBSD?
● 1.5 - How can I help support OpenBSD?
● 1.6 - Who maintains OpenBSD?
● 1.7 - When is the next release of OpenBSD?
● 1.8 - What is included with OpenBSD?
● 1.9 - What is new in OpenBSD 4.4?
● 1.10 - Can I use OpenBSD as a desktop system?
● 1.11 - Why is/isn't ProductX included?

2 - Getting to know OpenBSD

http://www.openbsd.org/faq/index.html (1 of 9)4/29/2009 5:04:22 PM

http://www.openbsd.org/translation.html
http://www.openbsd.org/faq/cs/index.html
http://www.openbsd.org/faq/de/index.html
http://www.openbsd.org/faq/fr/index.html
http://www.openbsd.org/faq/nl/index.html
http://www.openbsd.org/faq/pl/index.html
http://www.openbsd.org/faq/upgrade44.html
http://www.openbsd.org/faq/current.html
http://www.openbsd.org/stable.html
http://www.openbsd.org/porttest.html
http://www.openbsd.org/anoncvs.html
http://www.openbsd.org/cvsup.html
http://www.openbsd.org/cgi-bin/man.cgi
http://www.openbsd.org/report.html
http://www.openbsd.org/mail.html
http://www.openbsd.org/faq/pf/index.html
http://www.openbsd.org/openssh/faq.html
ftp://ftp3.usa.openbsd.org/pub/OpenBSD/doc/obsd-faq.pdf
ftp://ftp3.usa.openbsd.org/pub/OpenBSD/doc/pf-faq.pdf
ftp://ftp3.usa.openbsd.org/pub/OpenBSD/doc/obsd-faq.txt
ftp://ftp3.usa.openbsd.org/pub/OpenBSD/doc/pf-faq.txt
http://www.openbsd.org/index.html
http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi
http://www.openbsd.org/ftp.html

OpenBSD Frequently Asked Questions

● 2.1 - Web Pages
● 2.2 - Mailing Lists
● 2.3 - Manual Pages
● 2.4 - Reporting Bugs

3 - Getting started with OpenBSD

● 3.1 - Buying an OpenBSD CD set
● 3.2 - Buying OpenBSD T-Shirts
● 3.3 - Does OpenBSD provide an ISO image for download?
● 3.4 - Downloading via FTP, HTTP or AFS
● 3.5 - Selecting Hardware
● 3.6 - What is an appropriate "first system" to learn OpenBSD on?

4 - OpenBSD 4.4 Installation Guide

● 4.1 - Overview of the OpenBSD installation procedure.
● 4.2 - Pre-installation checklist
● 4.3 - Creating bootable OpenBSD install media
● 4.4 - Booting OpenBSD install media
● 4.5 - Performing an install
● 4.6 - What files are needed for Installation?
● 4.7 - How much space do I need for an OpenBSD installation?
● 4.8 - Multibooting OpenBSD
● 4.9 - Sending your dmesg to dmesg@openbsd.org after the install
● 4.10 - Adding a file set after install
● 4.11 - What is 'bsd.rd'?
● 4.12 - Common installation problems
● 4.13 - Customizing the install process
● 4.14 - How can I install a number of similar systems?
● 4.15 - How can I get a dmesg(8) to report an install problem?

5 - Building the System from Source

● 5.1 - OpenBSD's Flavors
● 5.2 - Why should I build my system from source?
● 5.3 - Building OpenBSD from source
● 5.4 - Building a release

http://www.openbsd.org/faq/index.html (2 of 9)4/29/2009 5:04:22 PM

OpenBSD Frequently Asked Questions

● 5.5 - Building X
● 5.6 - Why do I need a custom kernel?
● 5.7 - Building a custom kernel
● 5.8 - Boot-time configuration
● 5.9 - Using config(8) to change your kernel
● 5.10 - Getting more verbose output during boot
● 5.11 - Common Problems when Compiling and Building

6 - Networking

● 6.1 - Before we go any further
● 6.2 - Initial network setup
● 6.3 - How do I filter and firewall with OpenBSD?
● 6.4 - Dynamic Host Configuration Protocol (DHCP)
● 6.5 - Point to Point Protocol
● 6.6 - Tuning networking parameters
● 6.7 - Using NFS
● 6.9 - Setting up a bridge with OpenBSD
● 6.10 - How do I boot using PXE?
● 6.11 - The Common Address Redundancy Protocol (CARP)
● 6.12 - Using OpenNTPD
● 6.13 - What are my wireless networking options?
● 6.14 - How can I do equal-cost multipath routing?

7 - Keyboard and Display Controls

● 7.1 - How do I remap the keyboard? (wscons)
● 7.2 - Is there console mouse support in OpenBSD?
● 7.3 - How do I clear the console each time a user logs out?
● 7.4 - Accessing the console scrollback buffer. (amd64, i386, some

Alpha)
● 7.5 - How do I switch consoles? (amd64, i386, Zaurus, some Alpha)
● 7.6 - How can I use a console resolution of 80x50? (amd64, i386,

some Alpha)
● 7.7 - How do I use a serial console?
● 7.8 - How do I blank my console? (wscons)
● 7.9 - EVERYTHING I TYPE AT THE LOGIN PROMPT IS IN

CAPS!

http://www.openbsd.org/faq/index.html (3 of 9)4/29/2009 5:04:22 PM

OpenBSD Frequently Asked Questions

8 - General Questions

● 8.1 - I forgot my root password... What do I do!
● 8.2 - X won't start, I get lots of error messages
● 8.3 - Can I use programming language "L" on OpenBSD?
● 8.8 - Is there any way to use my floppy drive if it's not attached

during boot?
● 8.9 - OpenBSD Bootloader (i386, amd64 specific)
● 8.10 - Using S/Key on your OpenBSD system
● 8.12 - Does OpenBSD support SMP?
● 8.13 - I sometimes get Input/output error when trying to use my tty

devices
● 8.14 - What web browsers are available for OpenBSD?
● 8.15 - How do I use the mg editor?
● 8.16 - Ksh does not appear to read my .profile!
● 8.17 - Why does my /etc/motd file get written over when I modified

it?
● 8.20 - Antialiased and TrueType fonts in X
● 8.21 - Does OpenBSD support any journaling filesystems?
● 8.22 - Reverse DNS or Why is it taking so long for me to log in?
● 8.23 - Why do the OpenBSD web pages not conform to HTML4/

XHTML?
● 8.24 - Why is my clock off by twenty-some seconds?
● 8.25 - Why is my clock off by several hours?

9 - Migrating to OpenBSD

● 9.1 - Tips for users of other Unix-like Operating Systems
● 9.2 - Dual boot of Linux and OpenBSD
● 9.3 - Converting your Linux (or other Sixth Edition-style) password

file to BSD-style.
● 9.4 - Running Linux binaries on OpenBSD
● 9.5 - Accessing your Linux files from OpenBSD

10 - System Management

● 10.1 - When I try to su to root it says that I'm in the wrong group
● 10.2 - How do I duplicate a filesystem?

http://www.openbsd.org/faq/index.html (4 of 9)4/29/2009 5:04:22 PM

http://www.openbsd.org/faq/truetype.html

OpenBSD Frequently Asked Questions

● 10.3 - How do I start daemons with the system? (Overview of rc(8))
● 10.4 - Why do users get relaying access denied when they are

remotely sending mail through my OpenBSD system?
● 10.5 - I've set up POP, but I get errors when accessing my mail

through POP. What can I do?
● 10.6 - Why does Sendmail ignore /etc/hosts?
● 10.7 - Setting up a Secure HTTP Server using SSL(8)
● 10.8 - I made changes to /etc/passwd with vi(1), but the changes

didn't seem to take place. Why?
● 10.9 - How do I add a user? or delete a user?
● 10.10 - How do I create a ftp-only account?
● 10.11 - Setting up user disk quotas
● 10.12 - Setting up KerberosV Clients and Servers
● 10.13 - Setting up an Anonymous FTP Server
● 10.14 - Confining users to their home directories in ftpd(8).
● 10.15 - Applying patches in OpenBSD.
● 10.16 - Tell me about chroot(2) Apache?
● 10.17 - Can I change the root shell?
● 10.18 - What else can I do with ksh?
● 10.19 - Directory services, in particular YP

11 - The X Window System

● 11.1 - Introduction to X
● 11.2 - Configuring X
● 11.3 - Configuring X on amd64 and i386
● 11.4 - Starting X
● 11.5 - Customizing X

12 - Hardware and Platform-Specific Questions

● 12.1 - General hardware notes
● 12.2 - DEC Alpha
● 12.3 - AMD 64
● 12.4 - ARM-based appliances
● 12.5 - HP 9000 series 300, 400
● 12.6 - HP Precision Architecture (PA-RISC)
● 12.7 - i386

http://www.openbsd.org/faq/index.html (5 of 9)4/29/2009 5:04:22 PM

OpenBSD Frequently Asked Questions

● 12.8 - Landisk
● 12.9 - Luna88k
● 12.10 - Mac68k
● 12.11 - MacPPC
● 12.12 - MVME68k
● 12.13 - MVME88k
● 12.14 - SGI
● 12.15 - SPARC
● 12.16 - UltraSPARC
● 12.17 - DEC VAX
● 12.18 - Sharp Zaurus

13 - Multimedia

● 13.1 - How do I configure my audio device?
● 13.2 - Playing different kinds of audio
● 13.3 - How can I play audio CDs in OpenBSD?
● 13.4 - Can I use OpenBSD to record audio samples?
● 13.5 - What can I do if I have audio problems?
● 13.6 - How do I use my MIDI instruments?
● 13.7 - Tell me about Ogg Vorbis and MP3 encoding?
● 13.8 - How can I playback video DVDs in OpenBSD?
● 13.9 - How do I burn CDs and DVDs?
● 13.10 - But I want my media files in format FOO.
● 13.11 - Is it possible to play streaming media under OpenBSD?
● 13.12 - Can I have a Java plugin in my web browser? (i386 &

amd64 only)
● 13.13 - Can I have a Flash plugin in my web browser? (i386 only)

14 - Disk Setup

● 14.1 - Using OpenBSD's disklabel(8)
● 14.2 - Using OpenBSD's fdisk(8)
● 14.3 - Adding extra disks in OpenBSD
● 14.4 - How is swap handled?
● 14.5 - Soft Updates
● 14.6 - How does OpenBSD/i386 boot?
● 14.7 - What are the issues regarding large drives with OpenBSD?

http://www.openbsd.org/faq/index.html (6 of 9)4/29/2009 5:04:22 PM

OpenBSD Frequently Asked Questions

● 14.8 - Installing Bootblocks - i386/amd64 specific
● 14.9 - Preparing for disaster: Backing up and Restoring from tape.
● 14.10 - Mounting disk images in OpenBSD
● 14.11 - Help! I'm getting errors with IDE DMA!
● 14.13 - RAID options with OpenBSD
● 14.14 - Why does df(1) tell me I have over 100% of my disk

used?
● 14.15 - Recovering partitions after deleting the disklabel
● 14.16 - Can I access data on filesystems other than FFS?
● 14.17 - Can I use a flash memory device with OpenBSD?
● 14.18 - Optimizing disk performance
● 14.19 - Why aren't we using async mounts?

15 - The OpenBSD packages and ports system

● 15.1 - Introduction
● 15.2 - Package management
● 15.3 - Working with ports
● 15.4 - FAQ
● 15.5 - Reporting problems
● 15.6 - Helping us

PF User's Guide

● Basic Configuration
❍ Getting Started
❍ Lists and Macros
❍ Tables
❍ Packet Filtering
❍ Network Address Translation
❍ Traffic Redirection (Port Forwarding)
❍ Shortcuts For Creating Rulesets

● Advanced Configuration
❍ Runtime Options
❍ Scrub (Packet Normalization)
❍ Anchors
❍ Packet Queueing and Prioritization
❍ Address Pools and Load Balancing

http://www.openbsd.org/faq/index.html (7 of 9)4/29/2009 5:04:22 PM

http://www.openbsd.org/faq/pf/index.html
http://www.openbsd.org/faq/pf/config.html
http://www.openbsd.org/faq/pf/macros.html
http://www.openbsd.org/faq/pf/tables.html
http://www.openbsd.org/faq/pf/filter.html
http://www.openbsd.org/faq/pf/nat.html
http://www.openbsd.org/faq/pf/rdr.html
http://www.openbsd.org/faq/pf/shortcuts.html
http://www.openbsd.org/faq/pf/options.html
http://www.openbsd.org/faq/pf/scrub.html
http://www.openbsd.org/faq/pf/anchors.html
http://www.openbsd.org/faq/pf/queueing.html
http://www.openbsd.org/faq/pf/pools.html

OpenBSD Frequently Asked Questions

❍ Packet Tagging (Policy Filtering)
● Additional Topics

❍ Logging
❍ Performance
❍ Issues with FTP
❍ Authpf: User Shell for Authenticating Gateways
❍ Firewall Redundancy with CARP and pfsync

● Example Rulesets
❍ Firewall for Home or Small Office

Commonly Encountered Issues

● Common Installation Problems
● How do I upgrade my system?
● Packet Filter
● Should I use Ports or Packages?
● How do I set up a multi-boot system?
● Wireless networking options

Recent Updates

● Directory services, in particular YP -- new
● Installing without a floppy or CD-ROM -- new
● How is swap handled? -- revised
● Selecting hardware -- revised
● What is an appropriate "first system" to learn OpenBSD on? -- new
● Customizing X - new
● Using flash devices for boot media - new

The FAQ maintainer is Nick Holland
Additional contributors to the FAQ include Steven Mestdagh, Joel Knight,
Eric Jackson, Wim Vandeputte and Chris Cappuccio.

For information about and assisting in the translation of this FAQ and the

http://www.openbsd.org/faq/index.html (8 of 9)4/29/2009 5:04:22 PM

http://www.openbsd.org/faq/pf/tagging.html
http://www.openbsd.org/faq/pf/logging.html
http://www.openbsd.org/faq/pf/perf.html
http://www.openbsd.org/faq/pf/ftp.html
http://www.openbsd.org/faq/pf/authpf.html
http://www.openbsd.org/faq/pf/carp.html
http://www.openbsd.org/faq/pf/example1.html
http://www.openbsd.org/faq/upgrade44.html
http://www.openbsd.org/faq/pf/index.html

OpenBSD Frequently Asked Questions

rest of the OpenBSD website, see the translation page.

Questions and comments regarding the FAQ may be directed to
faq@openbsd.org. General questions about OpenBSD should be directed to
the appropriate mail list.

Back to OpenBSD

OpenBSD FAQ Copyright © 1998-2009 OpenBSD
$OpenBSD: index.html,v 1.308 2009/04/11 20:01:11 schwarze Exp $
"If you don't find it in the index, look very carefully through the entire catalogue."
Sears, Roebuck, and Co., Consumer's Guide, 1897

http://www.openbsd.org/faq/index.html (9 of 9)4/29/2009 5:04:22 PM

http://www.openbsd.org/translation.html
mailto:faq@openbsd.org
http://www.openbsd.org/mail.html
http://www.openbsd.org/index.html

1 - Introduction to OpenBSD

[FAQ Index] [To Section 2 - Other OpenBSD Information Resources]

1 - Introduction to OpenBSD

Table of Contents

● 1.1 - What is OpenBSD?
● 1.2 - On what systems does OpenBSD run?
● 1.3 - Is OpenBSD really free?
● 1.4 - Why might I want to use OpenBSD?
● 1.5 - How can I help support OpenBSD?
● 1.6 - Who maintains OpenBSD?
● 1.7 - When is the next release of OpenBSD?
● 1.8 - What is included with OpenBSD?
● 1.9 - What is new in OpenBSD 4.4?
● 1.10 - Can I use OpenBSD as a desktop system?
● 1.11 - Why is/isn't ProductX included?

1.1 - What is OpenBSD?

The OpenBSD project produces a freely available, multi-platform 4.4BSD-based UNIX-like operating
system. Our goals place emphasis on correctness, security, standardization, and portability. OpenBSD
supports binary emulation of most binaries from SVR4 (Solaris), FreeBSD, Linux, BSDI, SunOS, and
HPUX.

This FAQ specifically covers only the most recent release of OpenBSD, version 4.4.

1.2 - On what systems does OpenBSD run?

OpenBSD 4.4 runs on the following platforms:

http://www.openbsd.org/faq/faq1.html (1 of 8)4/29/2009 5:04:41 PM

http://www.openbsd.org/index.html
http://www.openbsd.org/index.html
http://www.openbsd.org/goals.html
http://www.openbsd.org/security.html
http://www.openbsd.org/plat.html

1 - Introduction to OpenBSD

● alpha - FTP only
● amd64 - Available on CD
● armish - FTP only
● hp300 - FTP only
● hppa - FTP only
● i386 - Available on CD
● landisk - FTP only
● mac68k - FTP only
● macppc - Available on CD
● mvme68k - FTP only
● mvme88k - FTP only
● sgi - FTP only
● socppc - FTP only
● sparc - FTP only
● sparc64 - Available on CD
● vax - FTP only
● zaurus - FTP only

Available on CD means the official CD set includes that platform and a number of packages. Base
system CD ISO images can also be downloaded for most other platforms.

More information on OpenBSD platforms can be found on the Platforms page.

People sometimes ask why we support so many "odd" machines. The short answer is, "because we want
to". If enough skilled people (sometimes, "enough" is only one really skilled person!) wish to maintain
support for a platform, it will be supported. There are practical benefits to keeping OpenBSD multi-
platform: when new platforms come out, the code tree is relatively free of portability-breaking bugs and
design flaws. The OpenBSD platforms include 32 bit and 64 bit processors, little and big endian
machines, and many different designs. And yes, supporting "unusual" platforms has helped produced a
higher-quality code base for more "common" platforms.

1.3 - Is OpenBSD really free?

OpenBSD is all free. The binaries are free. The source is free. All parts of OpenBSD have reasonable
copyright terms permitting free redistribution. This includes the ability to REUSE most parts of the
OpenBSD source tree, either for personal or commercial purposes. OpenBSD includes NO further
restrictions other than those implied by the original BSD license. Software which is written under
stricter licenses cannot be included in the regular distribution of OpenBSD. This is intended to safeguard
the free use of OpenBSD. For example, OpenBSD can be freely used for personal use, for academic use,
by government institutions, by non-profit making organizations and by commercial organizations.

http://www.openbsd.org/faq/faq1.html (2 of 8)4/29/2009 5:04:41 PM

http://www.openbsd.org/alpha.html
http://www.openbsd.org/amd64.html
http://www.openbsd.org/armish.html
http://www.openbsd.org/hp300.html
http://www.openbsd.org/hppa.html
http://www.openbsd.org/i386.html
http://www.openbsd.org/landisk.html
http://www.openbsd.org/mac68k.html
http://www.openbsd.org/macppc.html
http://www.openbsd.org/mvme68k.html
http://www.openbsd.org/mvme88k.html
http://www.openbsd.org/sgi.html
http://www.openbsd.org/socppc.html
http://www.openbsd.org/sparc.html
http://www.openbsd.org/sparc64.html
http://www.openbsd.org/vax.html
http://www.openbsd.org/zaurus.html
http://www.openbsd.org/orders.html
http://www.openbsd.org/plat.html

1 - Introduction to OpenBSD

OpenBSD, or parts of it, can also be freely incorporated into commercial products.

People sometimes ask if it bothers us that our free work is put into commercial products. The answer is,
we would prefer that our good code be widely used than that commercial software vendors reimplement
and create badly coded incompatible alternative solutions to already solved problems. For example, it is
likely that SSH is a widely used protocol due to this freedom, much more widely used than if restrictions
had been placed on how people used the OpenSSH code.

This isn't to say we would object to financial or hardware support in thanks. In fact, it is stunning how
little support of any kind comes from companies that depend upon OpenBSD for their products, but
there is no requirement of compensation.

For further reading on other popular licenses read: OpenBSD Copyright Policy.

The maintainers of OpenBSD support the project largely from their own pockets. This includes the time
spent programming for the project, equipment used to support the many ports, the network resources
used to distribute OpenBSD to you, and the time spent answering questions and investigating users' bug
reports. The OpenBSD developers are not independently wealthy and even small contributions of time,
equipment, and resources make a big difference.

1.4 - Why might I want to use OpenBSD?

New users frequently want to know whether OpenBSD is superior to some other free UNIX-like
operating system. That question is largely unanswerable and is the subject of countless (and useless)
religious debates. Do not, under any circumstances, ask such a question on an OpenBSD mailing list.

Below are some reasons why we think OpenBSD is a useful operating system. Whether OpenBSD is
right for you is a question that only you can answer.

● OpenBSD runs on many different hardware platforms.
● OpenBSD is thought of by many security professionals as the most secure UNIX-like operating

system, as the result of a never-ending comprehensive source code security audit.
● OpenBSD is a full-featured UNIX-like operating system available in source form at no charge.
● OpenBSD integrates cutting-edge security technology suitable for building firewalls and private

network services in a distributed environment.
● OpenBSD benefits from strong ongoing development in many areas, offering opportunities to

work with emerging technologies with an international community of programmers and end-
users.

● OpenBSD attempts to minimize the need for customization and tweaking. For the vast majority
of users, OpenBSD "Just Works" on their hardware for their application. Not only is tweaking
and customizing rarely needed, it is actively discouraged.

http://www.openbsd.org/faq/faq1.html (3 of 8)4/29/2009 5:04:41 PM

http://www.openbsd.org/products.html
http://www.openbsd.org/donations.html
http://www.openbsd.org/policy.html
http://www.openbsd.org/plat.html
http://www.openbsd.org/security.html
http://www.openbsd.org/crypto.html#hardware
http://www.openbsd.org/crypto.html#hardware

1 - Introduction to OpenBSD

1.5 - How can I help support OpenBSD?

We are greatly indebted to the people and organizations that have contributed to the OpenBSD project.
They are acknowledged by name on the donations page.

OpenBSD has a constant need for several types of support from the user community. If you find
OpenBSD useful, you are strongly encouraged to find a way to contribute. If none of the suggestions
below are right for you, feel free to propose an alternative by sending e-mail to donations@openbsd.org.

● Buy an OpenBSD CD set. It includes the current full release of OpenBSD, and is bootable on
many platforms. It also generates revenue to support the OpenBSD project, and reduces the strain
on network resources used to deliver the distribution via the Internet. This inexpensive three-CD
set includes full source. Remember, your friends need their own copy!

● Donate money. The project has a constant need for cash to pay for equipment, network
connectivity, and expenses relating to CD publishing. Manufacturing CDs requires an up-front
out-of-pocket investment for the OpenBSD developers, without guaranteed return. Send e-mail to
donations@openbsd.org to find out how to contribute. Even small donations make a profound
difference.

● Donate equipment and parts. The project has a constant need for general and specific hardware.
Items such as IDE and SCSI disks, and various types of RAM are always welcome. For other
types of hardware such as computer systems and motherboards, you should inquire as to current
need. Write to donations@openbsd.org to arrange for shipment.

● Donate your time and skills. Programmers who enjoy writing operating systems are naturally
always welcome, but there are literally dozens of other ways that people can be useful. Follow
mailing lists and help answer new-user questions.

● Help maintain documentation by submitting new FAQ material (to faq@openbsd.org). Form a
local user group and get your friends hooked on OpenBSD. Make a case to your employer for
using OpenBSD at work. If you're a student, talk to your professors about using OpenBSD as a
learning tool for Computer Science or Engineering courses. It's also worth mentioning one of the
most important ways you should not try to "help" the OpenBSD project: do not waste your time
engaging in operating system flame wars. It does not help the project to find new users and can
cause substantial harm to important relationships that developers have with other developers.

1.6 - Who maintains OpenBSD?

OpenBSD is maintained by a development team spread across many different countries. The project is
coordinated by Theo de Raadt, located in Canada.

1.7 - When is the next release of OpenBSD?

http://www.openbsd.org/faq/faq1.html (4 of 8)4/29/2009 5:04:41 PM

http://www.openbsd.org/donations.html
mailto:donations@openbsd.org
http://www.openbsd.org/orders.html
http://www.openbsd.org/donations.html
mailto:donations@openbsd.org
http://www.openbsd.org/want.html
mailto:donations@openbsd.org
http://www.openbsd.org/mail.html
mailto:faq@openbsd.org
http://www.openbsd.org/groups.html
http://www.openbsd.org/images/map.jpg

1 - Introduction to OpenBSD

The OpenBSD team makes a new release every six months, with target release dates in May and
November. More information on the development cycle can be found here.

1.8 - What is included with OpenBSD?

OpenBSD is distributed with a number of third-party software products, including:

● X.org 7.3, the X Window environment, with local patches. Installed with the x*.tgz install file
sets.

● GCC versions 2.95.3 and 3.3.5. GNU C Compiler. The OpenBSD team has added the Propolice
stack protection technology, enabled by default, and used throughout the OpenBSD userland and
by default on applications compiled on OpenBSD. Installed as part of the comp44.tgz file set.

● Perl 5.8.8, with patches and improvements from the OpenBSD team.
● Our improved and secured version of the Apache 1.3 web server. The OpenBSD team has added

default chrooting, privilege revocation, and other security-related improvements. Also includes
mod_ssl and DSO support.

● OpenSSL 0.9.7j, with patches and improvements from the OpenBSD team.
● Groff 1.15 text processor.
● Sendmail 8.14.3 mail server, with libmilter.
● BIND 9.4.2-P2 (plus patches) DNS server. OpenBSD has implemented many improvements in

chroot operation and other security-related issues.
● Lynx 2.8.5rel.4 text web browser. With HTTPS support added, plus patches from the OpenBSD

team.
● Sudo v1.6.9p17, allowing users to run individual commands as root.
● Ncurses 5.2
● KAME IPv6
● Heimdal 0.7.2 with patches
● Arla 0.35.7
● Binutils 2.15 with patches
● gdb 6.3 with patches
● OpenSSH 5.1
● OpenNTPD Secure and simple Network Time Protocol implementation
● OpenBGPD and OpenOSPFD routing applications

As can be seen, the OpenBSD team often patches third-party products (typically) to improve the security
or quality of the code. In some cases, the user will see no difference in operation, in other cases, there
ARE operational differences which may impact some users. Keep these enhancements in mind before
blindly adding different versions of the same software. You may get a bigger version number, but a less
secure system.

http://www.openbsd.org/faq/faq1.html (5 of 8)4/29/2009 5:04:41 PM

http://www.x.org/
http://gcc.gnu.org/
http://www.trl.ibm.com/projects/security/ssp
http://www.perl.com/
http://www.openssl.org/
http://www.gnu.org/software/groff/groff.html
http://www.sendmail.org/
http://www.isc.org/products/BIND/
http://lynx.isc.org/
http://www.courtesan.com/sudo/
http://www.gnu.org/software/ncurses/ncurses.html
http://www.kame.net/
http://www.pdc.kth.se/heimdal/
http://www.stacken.kth.se/projekt/arla/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/gdb/gdb.html
http://www.openssh.com/
http://www.openntpd.org/
http://www.openbgpd.org/

1 - Introduction to OpenBSD

Of course, additional applications can be added through the OpenBSD packages and ports system.

1.9 - What is new in OpenBSD 4.4?

The complete list of changes made to OpenBSD 4.3 to create OpenBSD 4.4 can be found on plus44.
html, and highlights on the OpenBSD 4.4 Information page, however here are a few changes the
OpenBSD team anticipate will require or warrant some special note to people upgrading or installing
OpenBSD 4.4 who are familiar with older versions:

● OpenBSD/sparc64:
Machines using the UltraSPARC IV/T1/T2 and Fujitsu SPARC64-V/VI/VII are now supported.

● New sysmerge(8) tool:
Derived from the Mergemaster port, makes it much easier to merge configuration file changes
during the upgrade process.

● hostname.* files now installed with mode 600
to help keep your wireless keys and other configuration info secret.

● dhcpd(8)
now supports synchronizing the leases file across multiple servers for redundancy. dhcpd(8) also
no longer uses the dhcpd.interfaces file, use an entry in rc.conf.local.

1.10 - Can I use OpenBSD as a desktop system?

This question is often asked in exactly this manner -- with no explanation of what the asker means by
"desktop". The only person who can answer that question is you, as it depends on what your needs and
expectations are.

While OpenBSD has a great reputation as a "server" operating system, it can be and is used on the
desktop. Many "desktop" applications are available through packages and ports. As with all operating
system decisions, the question is: can it do the job you desire in the way you wish? You must answer
this question for yourself.

It might be worth noting that a large amount of OpenBSD development is done on laptops.

1.11 - Why is/isn't ProductX included?

http://www.openbsd.org/faq/faq1.html (6 of 8)4/29/2009 5:04:41 PM

http://www.openbsd.org/plus44.html
http://www.openbsd.org/plus44.html
http://www.openbsd.org/44.html
http://www.openbsd.org/cgi-bin/man.cgi?query=sysmerge&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=hostname.if&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=dhcpd&sektion=8

1 - Introduction to OpenBSD

People often ask why a particular product is or isn't included with OpenBSD. The answer is based on
two things: the wishes of the developers and compatibility with the goals of the project. A product will
not be included simply because it is "neat" -- it must also be "free" for use, distribution and modification
by our standards. A product must also be stable and secure -- a bigger version number does not always
mean a better product.

License is often the biggest problem: we want OpenBSD to remain usable by any person anywhere in
the world for any purpose.

Another major consideration is the wishes of the developers. The OpenBSD developers are the ultimate
judges of what does and doesn't go into the project. Just because an application is "good" doesn't mean
the OpenBSD project wishes to devote the resources needed to maintaining it, or that they will share
other's enthusiasm about its place in OpenBSD.

Some commonly asked questions about third-party products:

● Why is Sendmail included, it is "known insecure"?!
Sendmail has had an imperfect security record, however the Sendmail authors and maintainers
have been very receptive to reworking their code to make it much more secure (and this is a sadly
uncommon response). The recent security history of Sendmail is not much different than some of
the supposedly "more secure" alternatives.

● Why isn't Postfix included?
The license is not free, and thus can not be considered.

● Why isn't qmail or djbdns included?
Neither program is what many Unix users "expect" out of a mail or DNS application.

● Why is Apache included? It isn't needed by many people!
Because the developers want it.

● Why isn't a newer version of Apache included?
The license on newer versions is unacceptable.

● Why isn't bzip2 included instead of gzip?
Performance is horrible, and benefit is minimal. Impact on slower platforms, such as m68k or
VAX would be unacceptable.

● Why isn't there a graphical or curses(3) based installer?
For a number of reasons, including the goal of keeping the installation boot media able to be a
single floppy disk, the fact that one installer can be used on all platforms in all configurations,
and the fact that after the second or third OpenBSD install, most users find the OpenBSD
installation system among the fastest and easiest installers of any OS. Most developers and users
greatly prefer the speed, power, and ease of use of the current installer to any of the more
"colorful" or "pretty" installers on some other platforms.

In most cases, these topics have been discussed in painful detail on the mail lists, please see archives if
you need more information.

http://www.openbsd.org/faq/faq1.html (7 of 8)4/29/2009 5:04:41 PM

http://www.openbsd.org/policy.html
http://www.openbsd.org/cgi-bin/man.cgi?query=curses&sektion=3

1 - Introduction to OpenBSD

Of course, If you wish to use one of these packages and your use is compatible with the license of the
products, no one will stop you (that wouldn't be very free if we tried, would it?). However, your needs
may change -- you may not want to develop a "Killer Application" that you can't sell, distribute, or get
rich from because you incorporated non-free software into it.

[FAQ Index] [To Section 2 - Other OpenBSD Information Resources]

 www@openbsd.org
$OpenBSD: faq1.html,v 1.106 2008/11/12 02:54:37 nick Exp $

http://www.openbsd.org/faq/faq1.html (8 of 8)4/29/2009 5:04:41 PM

mailto:www@openbsd.org

2 - Getting to know OpenBSD

[FAQ Index] [To Section 1 - Introduction to OpenBSD] [To Section 3 - Getting started with OpenBSD]

2 - Getting to know OpenBSD

Table of Contents

● 2.1 - Web Pages
● 2.2 - Mailing Lists
● 2.3 - Manual Pages
● 2.4 - Reporting Bugs

2.1 - Web Pages of Interest

The official website for the OpenBSD project is located at: http://www.OpenBSD.org.

A lot of valuable information can be found here regarding all aspects of the OpenBSD project.

The OpenBSD Journal is an OpenBSD-focused news and opinion site.

OpenBSDsupport.org is a site collecting "user maintained" documentation of varying quality, but often covering topics not
in this FAQ or other official documentation.

Many users have set up sites and pages with OpenBSD specific information. As with everything on the Internet, a good
search engine is going to make your life easier, as will a healthy dose of skepticism. As always, do not blindly enter
commands you do not understand into your computer.

2.2 - Mailing Lists

The OpenBSD project maintains several popular mailing lists which users should subscribe to and follow. To subscribe to
a mailing list, send an e-mail message to majordomo@openbsd.org. That address is an automated subscription service. In
the body of your message, on a single line, you should include a subscribe command for the list you wish to join. For
example:

subscribe announce

The list processor will reply to you, asking for confirmation of your intent to join the list, so that others can not subscribe
you to a flood of unwanted e-mail. The message will include instructions for several different ways to confirm, including a
list server web page link, responding to the confirmation message or responding to majordomo@openbsd.org. Use
whatever method is convenient to you. You will note that all three techniques involve a unique and time limited

http://www.openbsd.org/faq/faq2.html (1 of 10)4/29/2009 5:04:48 PM

http://www.openbsd.org/index.html
http://www.openbsd.org/
http://www.undeadly.org/
http://www.openbsdsupport.org/
mailto:majordomo@openbsd.org
http://lists.openbsd.org/

2 - Getting to know OpenBSD

identifying number, such as A56D-70D4-52C3, again to make sure you are really the person who requested this mail list
subscription (this is real "opt-in").

Once you have confirmed your intent to join, you will be immediately added to the list, and the list processor will notify
you that you were successfully added.

To unsubscribe from a list, you will again send an e-mail message to majordomo@openbsd.org. It might look like this:

unsubscribe announce

If you have any difficulties with the mailing list system, please first read the help file which can be obtained by sending an
e-mail message to majordomo@openbsd.org with a message body of "help".

Your subscription to the OpenBSD mail lists can also be maintained through the web interface at http://lists.openbsd.org

Some of the more popular OpenBSD mailing lists are:

● announce - Important announcements. This is a low-volume list.
● security-announce - Announcements of security issues. This is a low volume list.
● misc - General user questions and answers. This is the most active list, and should be the "default" for most

questions.
● bugs - Bugs received via sendbug(1) and discussions about them.
● source-changes - Automated mailing of CVS source tree changes. Every time a developer commits a change to the

OpenBSD source tree, CVS will send out a copy of the (usually brief) commit message via this list.
● ports - Discussion of the OpenBSD Ports Tree.
● ports-changes - Automated mailing of ports-specific CVS source tree changes.
● advocacy - Discussion on advocating OpenBSD, and topics that are just too off-topic for misc.

Before posting a question on misc or any other mailing list, please check the archives, for most common questions have
been asked repeatedly. While it might be the first time you have encountered the problem or question, others on the
mailing lists may have seen the same question several times in the last week, and may not appreciate seeing it again. If
asking a question possibly related to hardware, always include a dmesg(8)!

You can find several archives, other mailing list guidelines and more information on the mailing lists page.

An unofficial mailing list that may be of interest to new users of OpenBSD and Unix is the OpenBSD Newbies list.

2.3 - Manual Pages

OpenBSD comes with extensive documentation in the form of manual pages, as well as longer documents relating to
specific applications. Considerable effort is made to make sure the man pages are up-to-date and accurate. In all cases, the
man pages are considered the authoritative source of information for OpenBSD.

To access the manual pages and other documentation, be sure that you installed the man44.tgz and misc44.tgz file
sets.

Here is a list of some of the most useful manual pages for new users:

http://www.openbsd.org/faq/faq2.html (2 of 10)4/29/2009 5:04:48 PM

mailto:majordomo@openbsd.org
mailto:majordomo@openbsd.org
http://lists.openbsd.org/
http://www.openbsd.org/why-cvs.html
http://www.openbsd.org/cgi-bin/man.cgi?query=dmesg&sektion=8
http://www.openbsd.org/mail.html
http://mailman.theapt.org/listinfo/openbsd-newbies

2 - Getting to know OpenBSD

Getting Started

● afterboot(8) - things to check after the first complete boot.
● help(1) - help for new users and administrators.
● hier(7) - layout of filesystems.
● man(1) - display the on-line manual pages.
● intro(1) - introduction to general commands, also see the intros to the other sections of the manual: intro(2), intro

(3), intro(4) (note: intro(4) is platform specific), intro(5), intro(6), intro(7), intro(8), and intro(9).
● adduser(8) - command for adding new users.
● vipw(8) - edit the master password file.
● disklabel(8) - read and write disk pack label.
● reboot, halt(8) - stop and restart the system.
● shutdown(8) - close down the system at a given time.
● dmesg(8) - redisplay the kernel boot messages
● sudo(8) - don't log in as root, but run commands as root.
● mg(1) - emacs-like text editor.

For more advanced users

● boot(8) - system bootstrapping procedures.
● boot_config(8) - how to change kernel configuration at boot.
● gcc_local(1) - OpenBSD-specific modifications to gcc(1)
● ifconfig(8) - configure network interface parameters.
● login.conf(5) - format of the login class configuration file.
● netstat(1) - show network status.
● release(8) - build an OpenBSD release.
● sendbug(1) - send a problem report (PR) about OpenBSD to a central support site.
● style(9) - OpenBSD kernel source code style guide.
● sysctl(8) - get or set kernel state.

You can find all the OpenBSD man pages on the web at http://www.openbsd.org/cgi-bin/man.cgi as well as on your
computer if you install the man44.tgz file set.

In general, if you know the name of a command or a manual page, you can read it by executing "man command". For
example: "man vi" to read about the vi editor. If you don't know the name of the command, or if "man command"
doesn't find the manual page, you can search the manual page database by executing "apropos something" or
"man -k something", where "something" is a likely word that might appear in the title of the manual page you're
looking for. For example:

apropos "time zone"
tzfile (5) - time zone information
zdump (8) - time zone dumper
zic (8) - time zone compiler

The parenthetical numbers indicate the section of the manual in which that page can be found. In some cases, you may find
manual pages with identical names living in separate sections of the manual. For example, assume that you want to know

http://www.openbsd.org/faq/faq2.html (3 of 10)4/29/2009 5:04:48 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=afterboot&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=help&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=hier&sektion=7
http://www.openbsd.org/cgi-bin/man.cgi?query=man&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=intro&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=intro&sektion=2
http://www.openbsd.org/cgi-bin/man.cgi?query=intro&sektion=3
http://www.openbsd.org/cgi-bin/man.cgi?query=intro&sektion=3
http://www.openbsd.org/cgi-bin/man.cgi?query=intro&sektion=4&arch=i386
http://www.openbsd.org/plat.html
http://www.openbsd.org/cgi-bin/man.cgi?query=intro&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=intro&sektion=6
http://www.openbsd.org/cgi-bin/man.cgi?query=intro&sektion=7
http://www.openbsd.org/cgi-bin/man.cgi?query=intro&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=intro&sektion=9
http://www.openbsd.org/cgi-bin/man.cgi?query=adduser&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=vipw&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=disklabel&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=reboot&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=shutdown&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=dmesg&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=sudo&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=mg&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=boot_config&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=gcc-local&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=gcc&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=login.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=netstat&sektion1
http://www.openbsd.org/cgi-bin/man.cgi?query=release&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=sendbug&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=style&sektion=9
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi

2 - Getting to know OpenBSD

the format of the configuration files for the cron daemon. Once you know the section of the manual for the page you want,
you would execute "man n command", where n is the manual section number.

man -k cron
cron (8) - clock daemon
crontab (1) - maintain crontab files for individual users
crontab (5) - tables for driving cron
man 5 crontab

In addition to the UNIX manual pages, there is a typesettable document set (included in the misc44.tgz file set). It lives
in the /usr/share/doc directory. You can format each document set with a "make" in the appropriate subdirectory.
The psd subdirectory is the Programmer's Supplementary Documents distribution. The smm subdirectory is the System
Manager's Manual. The usd subdirectory is the UNIX User's Supplementary Documents distribution. You can perform
your "make" in the three distribution subdirectories, or you can select a specific section of a distribution and do a `make'
in its subdirectory.

Some of the subdirectories are empty. By default, formatting the documents will result in PostScript output, suitable for
printing. The PostScript output can be quite large -- you should assume a 250-300% increase in volume. If you do not have
access to a PostScript printer or display, you may also format the documents for reading on a terminal display. Each
document subdirectory has a target for building ASCII copies of these papers (called `paper.txt') which can be generated
with make(1). For example:

cd /usr/share/doc/usd/04.csh
make paper.txt
more paper.txt

Note that superuser privileges may be required to build documents in these directories, and that issuing make clean will
remove any papers generated by a previous make. See /usr/share/doc/README for more details about the documents in /
usr/share/doc/.

The UNIX manual pages are generally more current and trustworthy than the typesettable documents. The typesettable
documents sometimes explain complicated applications in more detail than the manual pages do.

For many, having a hardcopy of the man page can be useful. Here are the guidelines to making a printable copy of a man
page.

How do I display a man page source file (i.e. one whose filename ends in a number, like
tcpdump.8)?

These are found throughout the src tree. The man pages are found in the tree unformatted, and many times, through the use
of CVS, they will be updated. To view these pages, simply:

nroff -Tascii -mandoc <file> | more

How do I get a plain man page with no formatting or control characters?

This is helpful to get the man page straight, with no non-printable characters.
Example:

http://www.openbsd.org/faq/faq2.html (4 of 10)4/29/2009 5:04:48 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=make&sektion=1
http://www.openbsd.org/anoncvs.html

2 - Getting to know OpenBSD

man <command> | col -b

How can I get a PostScript copy of a man page that's print-ready?

Note that <file> must be the man page source file (probably a file that ends in a number e.g. tcpdump.8). The
PostScript versions of the man pages look very nice. They can be printed or viewed on-screen with a program like gv
(GhostView). GhostView can be found in our packages collection. Use the following nroff(1) command options for getting
a PostScript version from an OpenBSD system man page:

nroff -Tps -mandoc <file> > outfile.ps

How do I generate compressed copies of the man pages?

For people who build their system from source, there are a number of options relating to the way in which man pages are
built. These options can be placed in /etc/mk.conf (it may be necessary to create this file) and are included during system
builds. One especially useful option is to generate compressed man pages in order to save disk space. These can be viewed
in the normal way, using the man command. In order to set this, add the following to /etc/mk.conf:

MANZ=yes

Another useful option is to have the system build generate man pages in PostScript format, as well as ASCII text. This is
done by setting the option MANPS=yes in /etc/mk.conf. See mk.conf(5) for further details.

What are info files?

Some of the documentation for OpenBSD comes in the form of info files, typically contained in /usr/share/info.
This is an alternative form of documentation provided by GNU. Many of these files are more up to date than the manual
pages provided by GNU, and can be accessed with the info(1) command. For example, to view information about the GNU
compiler, gcc(1), type:

info gcc

After using info, you will really appreciate our man pages!

How do I get color man pages on XTerm?

The default configuration file for xterm(1) does not display color man pages. In order to get color output, copy the file /
etc/X11/app-defaults/XTerm-color to your home directory, and rename it ".Xdefaults". Be careful not to
overwrite any current settings in ".Xdefaults". This file contains all the settings you need to enable color in XTerm.
However, three lines need to be uncommented before this can work:

!*VT100*colorULMode: on
!*VT100*underLine: off
!*VT100*colorBDMode: on

The rest of this file allows you to choose colors for various settings. The relevant ones to the man pages are:

http://www.openbsd.org/faq/faq2.html (5 of 10)4/29/2009 5:04:48 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=nroff&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=mk.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=info&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=gcc&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=xterm&sektion=1

2 - Getting to know OpenBSD

*VT100*colorUL: yellow
*VT100*colorBD: white

That produces rather hellish looking man pages, so customize as necessary: may we suggest red for "colorUL" and
magenta for "colorBD"? There is also a man page viewer for X11 available, xman(1), which provides an alternative
(graphical) interface to the manual pages. See the manual pages for xterm and xman for more information.

How do I write my own manual page?

If you wish to write your own man page for an application you have written, a tutorial is provided in mdoc.samples(7).
There is also a handy reference guide provided in mdoc(7).

2.4 - Reporting Bugs

Before crying "Bug!", please make sure that is really what you are dealing with. If instead, you are not understanding how
something is done in OpenBSD or how it works, and can't find out how to resolve the problem using the manual pages or
the OpenBSD website, use the mail lists (usually misc@openbsd.org) to request help. If this is your first OpenBSD
experience, be realistic: you probably did not discover an unknown bug. Also note that faulty hardware can mimic a
software bug, please verify the current condition of your hardware before deciding you have found a "bug".

Finally, before submitting any bug report, please read http://www.openbsd.org/report.html.

Proper bug reporting is one of the most important responsibilities of end users. Very detailed information is required to
diagnose most serious bugs. Developers frequently get bugs reports via e-mail such as this:

From: joeuser@example.com
To: bugs@openbsd.org
Subject: HELP!!!

I have a PC and it won't boot!!!!! It's a 486!!!!!

Hopefully most people understand why such reports get summarily deleted. All bug reports should contain detailed
information. If Joe User had really expected someone to help find this bug, he or she would have supplied more
information... something like this:

http://www.openbsd.org/faq/faq2.html (6 of 10)4/29/2009 5:04:48 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=xman&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=mdoc.samples&sektion=7
http://www.openbsd.org/cgi-bin/man.cgi?query=mdoc&sektion=7
http://www.openbsd.org/report.html

2 - Getting to know OpenBSD

From: smartuser@example.com
To: bugs@openbsd.org
Subject: 3.3-beta panics on a SPARCStation2

OpenBSD 3.2 installed from an official CD-ROM installed and ran fine
on this machine.

After doing a clean install of 3.3-beta from an FTP mirror, I find the
system randomly panics after a period of use, and predictably and
quickly when starting X.

This is the dmesg output:

OpenBSD 3.3-beta (GENERIC) #9: Mon Mar 17 12:37:18 MST 2003
 deraadt@sparc.openbsd.org:/usr/src/sys/arch/sparc/compile/GENERIC
real mem = 67002368
avail mem = 59125760
using 200 buffers containing 3346432 bytes of memory
bootpath: /sbus@1,f8000000/esp@0,800000/sd@1,0
mainbus0 (root): SUNW,Sun 4/75
cpu0 at mainbus0: CY7C601 @ 40 MHz, TMS390C602A FPU; cache chip bug
- trap page uncached
cpu0: 64K byte write-through, 32 bytes/line, hw flush cache enabled
memreg0 at mainbus0 ioaddr 0xf4000000
clock0 at mainbus0 ioaddr 0xf2000000: mk48t02 (eeprom)
timer0 at mainbus0 ioaddr 0xf3000000 delay constant 17
auxreg0 at mainbus0 ioaddr 0xf7400003
zs0 at mainbus0 ioaddr 0xf1000000 pri 12, softpri 6
zstty0 at zs0 channel 0 (console i/o)
zstty1 at zs0 channel 1
zs1 at mainbus0 ioaddr 0xf0000000 pri 12, softpri 6
zskbd0 at zs1 channel 0: reset timeout
zskbd0: no keyboard
zstty2 at zs1 channel 1: mouse
audioamd0 at mainbus0 ioaddr 0xf7201000 pri 13, softpri 4
audio0 at audioamd0
sbus0 at mainbus0 ioaddr 0xf8000000: clock = 20 MHz
dma0 at sbus0 slot 0 offset 0x400000: rev 1+
esp0 at sbus0 slot 0 offset 0x800000 pri 3: ESP100A, 25MHz, SCSI ID 7
scsibus0 at esp0: 8 targets
sd0 at scsibus0 targ 1 lun 0: <SEAGATE, ST1480 SUN0424, 8628> SCSI2 0/direct fixed
sd0: 411MB, 1476 cyl, 9 head, 63 sec, 512 bytes/sec, 843284 sec total
sd1 at scsibus0 targ 3 lun 0: <COMPAQPC, DCAS-32160, S65A> SCSI2 0/direct fixed
sd1: 2006MB, 8188 cyl, 3 head, 167 sec, 512 bytes/sec, 4110000 sec total
le0 at sbus0 slot 0 offset 0xc00000 pri 5: address 08:00:20:13:10:b9
le0: 16 receive buffers, 4 transmit buffers
cgsix0 at sbus0 slot 1 offset 0x0: SUNW,501-2325, 1152x900, rev 11
wsdisplay0 at cgsix0
wsdisplay0: screen 0 added (std, sun emulation)
fdc0 at mainbus0 ioaddr 0xf7200000 pri 11, softpri 4: chip 82072

http://www.openbsd.org/faq/faq2.html (7 of 10)4/29/2009 5:04:48 PM

2 - Getting to know OpenBSD

fd0 at fdc0 drive 0: 1.44MB 80 cyl, 2 head, 18 sec
root on sd0a
rootdev=0x700 rrootdev=0x1100 rawdev=0x1102

This is the panic I got when attempting to start X:

panic: pool_get(mclpl): free list modified: magic=78746572; page 0xfaa93000;
 item addr 0xfaa93000
Stopped at Debugger+0x4: jmpl [%o7 + 0x8], %g0
RUN AT LEAST 'trace' AND 'ps' AND INCLUDE OUTPUT WHEN REPORTING THIS PANIC!
DO NOT EVEN BOTHER REPORTING THIS WITHOUT INCLUDING THAT INFORMATION!
ddb> trace
pool_get(0xfaa93000, 0x22, 0x0, 0x1000, 0x102, 0x0) at pool_get+0x2c0
sosend(0x16, 0xf828d800, 0x0, 0xf83b0900, 0x0, 0x0) at sosend+0x608
soo_write(0xfac0bf50, 0xfac0bf70, 0xfac9be28, 0xfab93190, 0xf8078f24, 0x0)
at soo_write+0x18
dofilewritev(0x0, 0xc, 0xfac0bf50, 0xf7fff198, 0x1, 0xfac0bf70) at
dofilewritev+0x12c
sys_writev(0xfac87508, 0xfac9bf28, 0xfac9bf20, 0xf80765c8, 0x1000, 0xfac0bf70)
at sys_writev+0x50
syscall(0x79, 0xfac9bfb0, 0x0, 0x154, 0xfcffffff, 0xf829dea0) at syscall+0x220
slowtrap(0xc, 0xf7fff198, 0x1, 0x154, 0x1, 0xfac87508) at slowtrap+0x1d8
ddb> ps
 PID PPID PGRP UID S FLAGS WAIT COMMAND
 27765 8819 29550 0 3 0x86 netio xconsole
 1668 29550 29550 0 3 0x4086 poll fvwm
 15447 29550 29550 0 3 0x44186 poll xterm
 8819 29550 29550 35 3 0x4186 poll xconsole
 1238 29550 29550 0 3 0x4086 poll xclock
 29550 25616 29550 0 3 0x4086 pause sh
 1024 25523 25523 0 3 0x40184 netio XFree86
*25523 25616 25523 35 2 0x44104 XFree86
 25616 30876 30876 0 3 0x4086 wait xinit
 30876 16977 30876 0 3 0x4086 pause sh
 16977 1 16977 0 3 0x4086 ttyin csh
 5360 1 5360 0 3 0x84 select cron
 14701 1 14701 0 3 0x40184 select sendmail
 12617 1 12617 0 3 0x84 select sshd
 27515 1 27515 0 3 0x184 select inetd
 1904 1 1904 0 2 0x84 syslogd
 9125 1 9125 0 3 0x84 poll dhclient
 7 0 0 0 3 0x100204 crypto_wa crypto
 6 0 0 0 3 0x100204 aiodoned aiodoned
 5 0 0 0 3 0x100204 syncer update
 4 0 0 0 3 0x100204 cleaner cleaner
 3 0 0 0 3 0x100204 reaper reaper
 2 0 0 0 3 0x100204 pgdaemon pagedaemon
 1 0 1 0 3 0x4084 wait init
 0 -1 0 0 3 0x80204 scheduler swapper

http://www.openbsd.org/faq/faq2.html (8 of 10)4/29/2009 5:04:48 PM

2 - Getting to know OpenBSD

Thank you!

See report.html for more information on creating and submitting bug reports. Detailed information about your hardware is
necessary if you think the bug could be in any way related to your hardware or hardware configuration. Usually, dmesg(8)
output is sufficient in this respect. A detailed description of your problem is necessary. You will note that the dmesg
described the hardware, the text explained why Smart User thought the system was not broken, (ran 3.2 properly), how this
crash was caused (starting X), and the output of the debugger's "ps" and "trace" commands. In this case, Smart User
provided output captured on a serial console; if you can not do that, you will have to use paper and pencil to record the
crash. (This was a real problem, and the information in the above report helped lead to a repair of this issue which
impacted Sun4c systems.)

If Smart User had a working OpenBSD system from which he wanted to submit a bug report, he would have used the
sendbug(1) utility to submit his bug report to the GNATS problem tracking system. Obviously you can't use sendbug(1)
when your system won't boot, but you should use it whenever possible. You will still need to include detailed information
about what happened, the exact configuration of your system, and how to reproduce the problem. The sendbug(1)
command requires that your system be able to send electronic mail successfully on the Internet. Note that the mail server
uses spamd(8) based greylisting, so it may take half an hour or so before the mail server accepts your bug report, so please
be patient.

After submitting a bug report via sendbug(1), you will be notified by e-mail about the status of the report. You may be
contacted by developers for additional information or with patches that need testing. You can also monitor the archives of
the bugs@openbsd.org mailing list, details on the mailing list page, or query the bug report database status at the on-
line Bug Tracking System.

More on getting useful info for developers

Here are a few additional tips:

Lost the "Panic message"?
Under some circumstances, you may lose the very first message of a panic, stating the reason for the panic. This is a very
important message, so you want to report it, as well. You can get this back by using the "show panic" command in ddb>
like this:

ddb> show panic
0: kernel: page fault trap, code=0
ddb>

In this case, the panic string was "Kernel: page fault trap, code=0"

Special note for SMP systems:
You should get a "trace" from each processor as part of your report:

http://www.openbsd.org/faq/faq2.html (9 of 10)4/29/2009 5:04:48 PM

http://www.openbsd.org/report.html
http://www.openbsd.org/cgi-bin/man.cgi?query=dmesg&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=sendbug&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=sendbug&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=sendbug&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=spamd&sektion=8
http://www.openbsd.org/mail.html
http://www.openbsd.org/query-pr.html

2 - Getting to know OpenBSD

ddb{0}> trace
pool_get(d05e7c20,0,dab19ef8,d0169414,80) at pool_get+0x226
fxp_add_rfabuf(d0a62000,d3c12b00,dab19f10,dab19f10) at fxp_add_rfabuf+0xa5
fxp_intr(d0a62000) at fxp_intr+0x1e7
Xintr_ioapic0() at Xintr_ioapic0+0x6d
--- interrupt ---
idle_loop+0x21:
ddb{0}> machine ddb 1
Stopped at Debugger+0x4: leave
ddb{1}> trace
Debugger(d0319e28,d05ff5a0,dab1bee8,d031cc6e,d0a61800) at Debugger+0x4
i386_ipi_db(d0a61800,d05ff5a0,dab1bef8,d01eb997) at i386_ipi_db+0xb
i386_ipi_handler(b0,d05f0058,dab10010,d01d0010,dab10010) at i386_ipi_handler+0x
4a
Xintripi() at Xintripi+0x47
--- interrupt ---
i386_softintlock(0,58,dab10010,dab10010,d01e0010) at i386_softintlock+0x37
Xintrltimer() at Xintrltimer+0x47
--- interrupt ---
idle_loop+0x21:
ddb{1}>

Repeat the "machine ddb x" followed by "trace" for each processor in your machine.

[FAQ Index] [To Section 1 - Introduction to OpenBSD] [To Section 3 - Getting started with OpenBSD]

 www@openbsd.org
$OpenBSD: faq2.html,v 1.98 2009/02/27 03:45:58 nick Exp $

http://www.openbsd.org/faq/faq2.html (10 of 10)4/29/2009 5:04:48 PM

mailto:www@openbsd.org

3 - Getting started with OpenBSD

[FAQ Index] [To Section 2 - Other OpenBSD Information Resources] [To Section 4 - Installation
Guide]

3 - Getting started with OpenBSD

Table of Contents

● 3.1 - Buying an OpenBSD CD set
● 3.2 - Buying OpenBSD T-Shirts
● 3.3 - Does OpenBSD provide an ISO image for download?
● 3.4 - Downloading via FTP, HTTP or AFS
● 3.5 - Selecting Hardware
● 3.6 - What is an appropriate "first system" to learn OpenBSD on?

3.1 - Buying an OpenBSD CD set

Purchasing an OpenBSD CD set is generally the best way to get started. Visit the ordering page to
purchase your copy: OpenBSD ordering page.

There are many good reasons to own an OpenBSD CD set:

● CD sales support ongoing development of OpenBSD.
● Development of a multi-platform operating system requires constant investment in equipment.
● Your support in the form of a CD set purchase has a real impact on future development.
● The CDs contains binaries (and source) for the most popular supported platforms.
● The CDs are bootable on several platforms, and can be used to bootstrap a machine without a pre-

existing installed operating system.
● The CDs are useful for bootstrapping even if you choose to install a snapshot.
● Installing from CD is faster! Installing from CD preserves network connectivity resources.
● OpenBSD CDs always come with very nice stickers. Your system isn't fully complete without

these. You can only get these stickers by buying a CD set or donating hardware.
● OpenBSD CD sets come with an assortment of useful and popular packages. The CD set is

http://www.openbsd.org/faq/faq3.html (1 of 5)4/29/2009 5:04:56 PM

http://www.openbsd.org/index.html
http://www.openbsd.org/orders.html

3 - Getting started with OpenBSD

complete enough to bring up a full work and development environment without any network
connection at all.

If you're installing a release version of OpenBSD, you should use a official CD set.

3.2 - Buying OpenBSD T-Shirts

Yes, OpenBSD has T-shirts for your wearing enjoyment. You can view these at the OpenBSD T-shirts
page. Enjoy :)

3.3 - Does OpenBSD provide an ISO image for download?

Starting with OpenBSD 4.2, for select platforms, yes!

Users of the alpha, amd64, hppa, i386, macppc, sparc and sparc64 platforms can now download and
install ISO image which can be used to create a CD-ROM that can boot and install all of OpenBSD.

Note, this ISO is not the same as the official CD set. These images are for single platforms, and do not
include any of the pre-compiled packages, stickers, or artwork that the official CD set does.

As before, however, ISO file installation is NOT the optimum installation method for many people. It is
still usually faster and simpler to download the boot media and then install just the portions needed.
However, for those who wish to do a number of installations, or can not figure out how to drop ten files
on a CD-ROM or set up a local FTP server, ISOs are available.

The OpenBSD project does not make the ISO images used to master the official CDs available for
download. The reason is simply that we would like you to buy the CD sets to help fund ongoing
OpenBSD development. The official OpenBSD CD-ROM layout is copyright Theo de Raadt. Theo does
not permit people to redistribute images of the official OpenBSD CDs. As an incentive for people to buy
the CD set, some extras are included in the package as well (artwork, stickers etc).

Note that only the CD layout is copyrighted, OpenBSD itself is free. Nothing precludes someone else
from downloading OpenBSD and making their own CD.

For those that need a bootable CD for their system, bootdisk ISO images (named cd44.iso) are
available for a number of platforms which will then permit the rest of the system to be installed via FTP.
These ISO images are only a few megabytes in size, and contain just the installation tools, not the actual
file sets.

3.4 - Downloading via FTP, HTTP or AFS

http://www.openbsd.org/faq/faq3.html (2 of 5)4/29/2009 5:04:56 PM

http://www.openbsd.org/tshirts.html
http://www.openbsd.org/tshirts.html
http://www.openbsd.org/orders.html

3 - Getting started with OpenBSD

There are numerous international mirror sites offering FTP and HTTP access to OpenBSD releases and
snapshots. AFS access is also available. You should always use the site nearest to you. Before you begin
fetching a release or snapshot, you may wish to use ping(8) and traceroute(8) to determine which mirror
site is nearest to you and whether that mirror is performing adequately. Of course, your OpenBSD
release CD is always closer than any mirror. Access information is here:

OpenBSD FTP page.

3.5 - Selecting Hardware

Selecting appropriate hardware to run your OpenBSD system on is important, as it can mean the
difference between success and failure of a project.

If you are shopping for a new PC, whether you are buying it piece by piece or completely pre-built, you
want to make sure first that you are buying reliable parts. In the PC world, this is not easy. Bad or
otherwise unreliable or mismatched parts can make OpenBSD run poorly and crash often. The
best advice we can give is to be careful, and buy brands and parts that have been reviewed by an
authority you trust. Sometimes, a higher-price machine is a better quality machine. Other times, it is
simply more expensive.

There are certain things that will help bring out the maximum performance of your system:

● Let the application chose the hardware: It is usually better to make an adjustment to the
hardware you were planning on using rather than compromising on your application design
because you have something you "really wanted to use".

● Identify your bottlenecks: Don't pay extra for the cutting-edge processor if your application is
restricted by disk I/O. Don't pay for fast disk if your system is restricted by network speed. Don't
pay for much of anything if your bottleneck is a 128kbps DSL line.

● Keep it simple: Simple hardware usually has simple problems. Complex hardware that isn't
supposed to ever break may take you a long time to repair when it breaks anyway.

● Use hardware you understand, or learn the new hardware before you implement a
production system: Regardless of the technical merits of the hardware, committing to use a
particular type of hardware before you have become familiar with it, both how it works and how
it fails, is foolish.

● Use multiple disks: Instead of buying one large disk, buy multiple smaller disks. While this may
cost more, distributing the load over multiple spindles will decrease the amount of time necessary
to access data on the disks. And, with more spindles, you can get more reliability and faster data
access with RAID.

● Break up large blocks of storage: Many people make the mistake of designing a system that
stores large amounts of data to have one Big Block of Storage. This is usually a bad design. You
will usually find it much better to break up your storage into manageable blocks. This has many

http://www.openbsd.org/faq/faq3.html (3 of 5)4/29/2009 5:04:56 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ping&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=traceroute&sektion=8
http://www.openbsd.org/ftp.html

3 - Getting started with OpenBSD

advantages, two of the biggest being that you can add more storage later when you need it easily
(you weren't going to get the requirements estimate right, no one ever does), and you can buy a
small amount of storage now, and add much more later when the price will have most likely
dropped and the capacity will have increased.

● Avoid cheap network adapters: OpenBSD supports a plethora of cheap network adapters.
These adapters work great in home systems, and low or moderate throughput business and
research environments. But, if you need high throughput and low impact on your server, you are
better off buying a quality network adapter. Unfortunately, some name-brand adapters are not
much better than the cheap adapters, and some potentially good adapters do not have accurate
documentation available to write good drivers. Gigabit adapters often perform better than
10Mbps/100Mbps adapters, even when used on slower speed networks, due to superior buffering.

3.6 - What is an appropriate "first system" to learn OpenBSD
on?

While OpenBSD will run on a smaller, older and less powerful computer than just about any other
modern OS, if you are just getting started with OpenBSD, using too little machine can be frustrating.
The following guidelines are ONLY guidelines, OpenBSD will run very well on much more modest
equipment than is listed here, but it may be more frustrating than needed for a first-time user.

● Platform: Use a platform you are familiar with already. When you are learning a new operating
system, it is a very bad time to also be learning a new platform. We'll assume you are going to be
using the i386 platform here, as it is probably the one most people are familiar with.

● Processor: 100MHz Pentium or better processor. Yes, OpenBSD will run on a 25MHz 80486,
but you won't want to do the experimenting and messing up and reloading you need to do to
really get to know the system on a slow machine. The primary irritation you will first encounter
with a processor slower than this is the time it takes to SSH into the box. If you wish to run X,
you probably want to move up to at least 200MHz. X actually runs pretty well on a slower
machine once loaded, but it takes a while to load and start.

● 64M RAM or better: If you wish to run X, 128M would be a better starting point.
● Hard disk: A 1G hard disk will give you an easy install of a simple system, such as a firewall,

DNS server, or similar. If you wish to rebuild the system from source, you will probably want a
4G disk, and if you wish to rebuild X as well, you will want 6G or bigger. IDE is recommended
to start with. If you have a much larger disk, don't feel the obligation to allocate all the disk
initially -- there is nothing wrong with leaving 72G of an 80G hard disk unallocated if all you
need is 8G.

● Network adapter: Use a PCI adapter. While the urge to use that old ISA adapter you have may
be strong, resist. You probably don't remember how to properly configure it. If you are planning
on putting multiple network adapters in the machine, write the MAC address on the spine of the
card before putting the cover on.

● Multibooting: For your first OpenBSD installation, don't attempt to multiboot with another OS.
Multibooting is a difficult process to get right, and you should understand all the OSs involved

http://www.openbsd.org/faq/faq3.html (4 of 5)4/29/2009 5:04:56 PM

http://www.openbsd.org/i386.html

3 - Getting started with OpenBSD

well before attempting this, which is clearly not the case on your first installation. It is very
possible you could accidently delete all data on the system. Rather, use a dedicated computer, or
at least, a dedicated disk on a machine.

● Laptops: While many laptops work very well with OpenBSD, they are sometimes not the easiest
systems to get running well, so a laptop might not be the best choice for your first OpenBSD
install. However, once you are comfortable with OpenBSD, a laptop can be a very useful tool.

● New hardware: Brand new, cutting-edge hardware is sometimes not yet supported by
OpenBSD, so for your first OpenBSD system, a slightly older machine is recommended.

Obviously, "more the better" to a point. Some popular applications, seemingly can use as much
processor and memory as you can throw at the system.

[FAQ Index] [To Section 2 - Other OpenBSD Information Resources] [To Section 4 - Installation
Guide]

 www@openbsd.org
$OpenBSD: faq3.html,v 1.64 2009/02/27 03:57:36 nick Exp $

http://www.openbsd.org/faq/faq3.html (5 of 5)4/29/2009 5:04:56 PM

mailto:www@openbsd.org

4 - OpenBSD 4.4 Installation Guide

[FAQ Index] [To Section 3 - Getting started with OpenBSD] [To Section 5 - Building the System from Source]

4 - OpenBSD 4.4 Installation Guide

Table of Contents

● 4.1 - Overview of the OpenBSD installation procedure
● 4.2 - Pre-installation checklist
● 4.3 - Creating bootable OpenBSD install media

❍ 4.3.1 - Creating floppies on Unix
❍ 4.3.2 - Creating floppies on Windows
❍ 4.3.3 - Creating a boot CD

● 4.4 - Booting OpenBSD install media
● 4.5 - Performing an install

❍ 4.5.1 - Starting the install
❍ 4.5.2 - Setting up disks
❍ 4.5.3 - Setting the system hostname
❍ 4.5.4 - Configuring the network
❍ 4.5.5 - Choosing installation media
❍ 4.5.6 - Choosing file sets
❍ 4.5.7 - Finishing up

● 4.6 - What files are needed for installation?
● 4.7 - How much space do I need for an OpenBSD installation?
● 4.8 - Multibooting OpenBSD/i386
● 4.9 - Sending your dmesg to dmesg@openbsd.org after the install
● 4.10 - Adding a file set after install
● 4.11 - What is 'bsd.rd'?
● 4.12 - Common installation problems

❍ 4.12.1 - My Compaq only recognizes 16M RAM
❍ 4.12.2 - My i386 won't boot after install
❍ 4.12.3 - My machine booted, but hung at the ssh-keygen process
❍ 4.12.4 - I got the message "Failed to change directory" when doing an install
❍ 4.12.5 - My fdisk partition table is trashed or blank!
❍ 4.12.6 - I have no floppy or CD-ROM on my machine

● 4.13 - Customizing the install process
● 4.14 - How can I install a number of similar systems?
● 4.15 - How can I get a dmesg(8) to report an install problem?

4.1 - Overview of the OpenBSD installation procedure

OpenBSD has a robust and adaptable text-based installation procedure, and can be installed from a single floppy disk. Most

http://www.openbsd.org/faq/faq4.html (1 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/index.html

4 - OpenBSD 4.4 Installation Guide

platforms follow a similar installation procedure; however there are some differences in the details. In all cases, you are urged to
read the platform-specific INSTALL document in the platform directory on the CD-ROM or FTP sites (for example, i386/
INSTALL.i386, mac68k/INSTALL.mac68k or sparc/INSTALL.sparc).

The OpenBSD installation process uses a special kernel with a number of utilities and install scripts embedded in a preloaded
RAM disk. After this kernel is booted, the operating system is extracted from a number of compressed tar(1) (.tgz) files from a
source other than this preloaded RAM disk. There are several ways to boot this install kernel:

● Floppy disk: Floppy disk images are provided which can be used to create an install floppy on another Unix-like system,
or on a Windows system. Typical file names are floppy44.fs, though several platforms have multiple floppy images
available.

● CD-ROM: On several platforms a CD-ROM image (cd44.iso for just booting, or install44.iso for the entire
install) is provided allowing creation of a bootable CD-ROM.

● Existing partition: The RAM disk kernel can be booted off an already existing partition for an upgrade or reinstall.
● Network: Some platforms support booting over a network (for example using PXE or other network boot).
● Writing a file system image to disk (miniroot): a filesystem image that can be written to an existing partition, and then

can be booted.
● Bootable Tape: Some platforms support booting from tape. These tapes can be made following the INSTALL.platform

instructions.

Not every platform supports all boot options:

● alpha: Floppy, CD-ROM, network, writing a floppy image to hard disk.
● amd64: Floppy, CD-ROM, network.
● armish: Varies by machine.
● hp300: CD-ROM, network.
● hppa: Network.
● i386: Floppy, CD-ROM, network.
● landisk: miniroot, installed using another computer.
● mac68k: Booted using utilities running on Mac OS. See INSTALL.mac68k for details.
● macppc: CD-ROM, network.
● mvme68k: Network, bootable tape.
● mvme88k: Network, bootable tape.
● sparc: Floppy, CD-ROM, network, writing image to existing swap partition, bootable tape.
● sparc64: Floppy (U1/U2 only), CD-ROM, network, writing image to existing partition.
● vax: Floppy, network.
● zaurus: Boot bsd.rd from Linux partition. See INSTALL.zaurus for details.

All platforms can also use a bsd.rd to reinstall or upgrade.

Once the install kernel is booted, you have several options of where to get the install file sets. Again, not every platform supports
every option.

● CD-ROM: Of course, we prefer you use the Official CD-ROM set, but you can also use install44.iso or you can
also make your own.

● FTP: Either one of the OpenBSD FTP mirror sites or your own local FTP server holding the file sets.
● HTTP: Either one of the OpenBSD HTTP mirror sites or your own local web server holding the file sets.
● Local disk partition: In many cases, you can install file sets from another partition on a local hard disk. For example, on

i386, you can install from a FAT partition or a CD-ROM formatted in ISO9660, Rock Ridge or Joliet format. In some
cases, you will have to manually mount the file system before using it.

http://www.openbsd.org/faq/faq4.html (2 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=tar&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=diskless&sektion=8
http://www.openbsd.org/plat.html
http://www.openbsd.org/alpha.html
http://www.openbsd.org/amd64.html
http://www.openbsd.org/armish.html
http://www.openbsd.org/hp300.html
http://www.openbsd.org/hppa.html
http://www.openbsd.org/i386.html
http://www.openbsd.org/landisk.html
http://www.openbsd.org/mac68k.html
ftp://ftp.openbsd.org/pub/OpenBSD/4.4/mac68k/INSTALL.mac68k
http://www.openbsd.org/macppc.html
http://www.openbsd.org/mvme68k.html
http://www.openbsd.org/mvme88k.html
http://www.openbsd.org/sparc.html
http://www.openbsd.org/sparc64.html
http://www.openbsd.org/vax.html
http://www.openbsd.org/zaurus.html
ftp://ftp.openbsd.org/pub/OpenBSD/4.4/zaurus/INSTALL.zaurus
http://www.openbsd.org/orders.html
http://www.openbsd.org/ftp.html
http://www.openbsd.org/ftp.html#http
http://www.openbsd.org/i386.html

4 - OpenBSD 4.4 Installation Guide

● NFS: Some platforms support using NFS mounts for the file sets.
● Tape: File sets can also be read from a supported tape. Details on creating the tape are in the INSTALL.platform

document.

4.2 - Pre-installation checklist

Before you start your install, you should have some idea what you want to end up with. You will want to know the following
items, at least:

● Machine name
● Hardware installed and available

❍ Verify compatibility with your platform's hardware compatibility page
❍ If ISA, you also need to know hardware settings, and confirm they are as OpenBSD requires.

● Install method to be used (CD-ROM, FTP, etc.)
● Should an important bug be found, how will the system be patched?

❍ If done locally, you will need to have sufficient space available for the source tree and building it.
❍ Otherwise, you will need access to another machine to build a patched release on.

● Desired disk layout
❍ Does existing data need to be saved elsewhere?
❍ Will OpenBSD coexist on this system with another OS? If so, how both will be booted? Will you need to install a

"boot manager"?
❍ Will the entire disk be used for OpenBSD, or do you want to keep an existing partition/OS (or space for a future

one)?
❍ How do you wish to sub-partition the OpenBSD part of your disk?

● Network settings, if not using DHCP:
❍ Domain name
❍ Domain Name Server(s) (DNS) address
❍ IP addresses and subnet masks for each NIC
❍ Gateway address

● Will you be running the X Window System?

4.3 - Creating bootable OpenBSD install media

As examples, we will look at the installation images available for the i386 and sparc platforms.

The i386 platform has six separate installation disk images to choose from:

● floppy44.fs (Desktop PC) supports many PCI and ISA NICs, IDE and simple SCSI adapters and some PCMCIA
support. Most users will use this image if booting from a floppy

● floppyB44.fs (Servers) supports many RAID controllers, and some of the less common SCSI adapters. However,
support for many standard SCSI adapters and many EISA and ISA NICS has been removed.

● floppyC44.fs (Laptops) supports the CardBus and PCMCIA devices found in many laptops.
● cd44.iso is an ISO9660 image that can be used to create a bootable CD with most popular CD-ROM creation software

on most platforms. This image has the widest selection of drivers, and is usually the recommended choice if your hardware
can boot from a CDROM.

● cdemu44.iso is an ISO9660 image, using "floppy emulation" booting, using a 2.88M floppy image. It is hoped that few
people will need this image -- most people will use cd44.iso, only use cdemu44.iso if cd44.iso doesn't work for
you.

● install44.iso is an ISO9660 image, containing all the standard install files. This file can be used to create a CD that
can do a stand-alone OpenBSD install.

http://www.openbsd.org/faq/faq4.html (3 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/i386.html
http://www.openbsd.org/sparc.html
http://www.openbsd.org/i386.html

4 - OpenBSD 4.4 Installation Guide

Yes, there may be situations where one install disk is required to support your SCSI adapter and another disk is required to support
your network adapter. Fortunately, this is a rare event, and can usually be worked around.

The sparc platform has four separate installation disk images to choose from:

● floppy44.fs: Supports systems with a floppy disk.
● cd44.iso An ISO image usable to make your own CD for booting SPARC systems with a CD-ROM.
● miniroot44.fs Can be written to a swap partition and booted.
● install44.iso is an ISO9660 image, containing all the standard install files. This file can be used to create a CD that

can do a stand-alone OpenBSD install.

4.3.1 - Creating floppies on Unix

To create a formatted floppy, use the fdformat(1) command to both format and check for bad sectors.

 # fdformat /dev/rfd0c
 Format 1440K floppy `/dev/rfd0c'? (y/n): y
 Processing VV done.

If your output is like the above example, then the disk is OK. However, if you do not see ALL "V"'s then the disk is most likely
bad, and you should try a new one.

Note that some Unix-like systems have different commands for formatting floppies. Refer to your system's documentation for the
exact procedure.

Once you have a clean, formatted floppy it is time to write the installation image to floppy. For this, you can use the dd(1) utility.
An example usage of dd(1) is below:

 # dd if=floppy44.fs of=/dev/rfd0c bs=32k

Once the image is written, check to make sure that the copied image is the same as the original with the cmp(1) command. If the
diskette is identical to the image, you will just see another prompt.

 # cmp /dev/rfd0c floppy44.fs

4.3.2 - Creating floppies on Windows

This section describes how to write the installation images to floppy disk under Windows. You can get the tools mentioned below
from the tools directory on any of the FTP mirrors.

To prepare a floppy in Windows, first use the native formatting tools to format the disk, verifying that the disk has no bad sectors.

To write the installation image to the prepared floppy you can use ntrw.exe.

Example usage of ntrw:

http://www.openbsd.org/faq/faq4.html (4 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/sparc.html
http://www.openbsd.org/cgi-bin/man.cgi?query=fdformat&sektion=1&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=dd&sektion=0
http://www.openbsd.org/cgi-bin/man.cgi?query=cmp&sektion=1
ftp://ftp.openbsd.org/pub/OpenBSD/4.4/tools/

4 - OpenBSD 4.4 Installation Guide

 C:\> ntrw floppy44.fs a:
 3.5", 1.44MB, 512 bytes/sector
 bufsize is 9216
 1474560 bytes written

4.3.3 - Making a CD-ROM

You can create a CD-ROM using the cd44.iso or install44.iso files. The exact details here are left to the reader to
determine with the tools they have at their disposal.

Some of the tools in OpenBSD are:

● mkhybrid(8)
● cdrecord, part of the cdrtools collection in the OpenBSD Packages and Ports System.
● cdio(1)'s "track at once" (tao) recording option.

4.4 - Booting OpenBSD install media

Booting i386/amd64

Booting an install image on the i386 and amd64 PC platforms is nothing new to most people. If you are using a floppy disk,
simply insert the floppy into the floppy drive and boot the system. The install image will then load, provided floppy boot is
enabled in your BIOS. If you want to boot from CD, you must go into your system's BIOS and set the boot options to allow
booting from CD. Some older BIOSes do not have this option, and you must use a floppy for booting your installation image.
Don't worry though; even if you boot from floppy you can still install from the CD if it is supported by OpenBSD (i.e., almost all
IDE drives).

You can also install by booting bsd.rd from an existing OpenBSD partition, or over the network using the PXE boot process.

Booting sparc/sparc64

NOTE: On the sparc64 platform, only the SBus machines (Ultra 1, Ultra 2) are bootable from floppy.

To boot from floppy, place the floppy disk with the OpenBSD installation image on it into the floppy drive. Then use the
following command to boot from the floppy:

 ok boot floppy

To boot from CD-ROM, place the OpenBSD CD-ROM disk into the drive. Usually, you can boot from the CDROM drive of a
Sun system from the boot prompt by typing 'boot cdrom':

 ok boot cdrom

Of course, this will only work in new command mode. If you are at the old command mode prompt (a right arrow), type 'n' for the
new command mode. (If you are using an old sparc that is pre-sun4c, you probably don't have a new command mode. In this case,
you need to experiment.) If you have multiple CD-ROM devices, you need to boot from the correct one. try probe-scsi (or

http://www.openbsd.org/faq/faq4.html (5 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=mkhybrid&sektion=8
http://cdrecord.berlios.de/old/private/cdrecord.html
http://www.openbsd.org/cgi-bin/man.cgi?query=cdio&sektion=1
http://www.openbsd.org/sparc64.html

4 - OpenBSD 4.4 Installation Guide

probe-ide on newer systems) from the new command mode.

 ok probe-scsi

 Target 0
 Unit 0 Disk QUANTUM LIGHTNING 365S
 Target 1
 Unit 0 Removable Disk QUANTUM EMPIRE_1080S
 Target 3
 Unit 0 Removable Disk Joe's CD-ROM

Figure out which disk is the CD-ROM you want to boot from. Note the target number.

 ok boot /sbus/esp/sd@X,0

4.5 - Performing an install

4.5.1 - Starting the install

Whatever your means of booting is, it is now time to use it. During the boot process, the kernel and all of the programs used to
install OpenBSD are loaded into memory. The most common problem when booting is a bad floppy disk or a drive alignment
problem. The boot floppy is quite tightly packed -- any bad spot will cause problems.

At almost any point during the OpenBSD install process, you can terminate the current install attempt by hitting CTRL-C and can
restart it without rebooting by running install at the shell prompt.

When your boot is successful, you will see a lot of text messages scroll by. This text, on many architectures in white on blue, is
the dmesg, the kernel telling you what devices have been found, and where. Don't worry about remembering this text, as a copy is
saved as /var/run/dmesg.boot.

Then, you will see the following:

 root on rd0a swap on rd0b dump on rd0b
 erase ^?, werase ^W, kill ^U, intr ^C, status ^T
 (I)nstall, (U)pgrade or (S)hell? i

And with that, we reach our first question. Most of the time, you have the three options shown:

● Install: load OpenBSD onto the system, overwriting whatever may have been there. Note that it is possible to leave some
partitions untouched in this process, such as a /home, but otherwise, assume everything else is overwritten.

● Upgrade: Install a new set of install files on this machine, but do not overwrite any configuration information, user data, or
additional programs. No disk formatting is done, nor are the /etc or /var directories overwritten. A few important notes:

❍ You will not be given the option of installing the etc44.tgz file. After the install, you will have to manually
merge the changes of etc44.tgz into your system before you can expect it to be fully functional. This is an
important step which must be done, as otherwise certain key services (such as pf(4)) may not start.

❍ The Upgrade process is not designed to skip releases! While this will often work, it is not supported. For OpenBSD
4.4, upgrading 4.3 to 4.4 is the only supported upgrade. If you have to upgrade from an older version, upgrade to

http://www.openbsd.org/faq/faq4.html (6 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=dmesg&sektion=8
http://www.openbsd.org/faq/upgrade44.html#etcUpdates
http://www.openbsd.org/faq/upgrade44.html#etcUpdates
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4

4 - OpenBSD 4.4 Installation Guide

intermediate versions first, or if the system is very out-of-date, consider a complete reinstall.
More information on upgrading between releases can be found in the OpenBSD Upgrade Guide 4.4.

● Shell: Sometimes, you need to perform repairs or maintenance to a system which will not (or should not) boot to a normal
kernel. This option will allow you to do maintenance to the system. A number of important utilities are available on the
boot media.

On occasion, you will not see the "Upgrade" option listed. After a flag day event, it is not possible to directly upgrade; one must
reinstall the system from scratch.

In this example, we will do an install, but the upgrade process is similar.

 Welcome to the OpenBSD/i386 4.4 install program.

 This program will help you install OpenBSD. At any prompt except password
 prompts you can escape to a shell by typing '!'. Default answers are shown
 in []'s and are selected by pressing RETURN. At any time you can exit this
 program by pressing Control-C, but exiting during an install can leave your
 system in an inconsistent state.

 Terminal type: [vt220] Enter
 kbd(8) mapping? ('L' for list) [none] Enter

In most cases, the default terminal type is appropriate; however if you are using a serial console for install, don't just take the
default, respond appropriately.

If you do not select a keyboard encoding table, a US keyboard layout will be assumed.

 IS YOUR DATA BACKED UP? As with anything that modifies disk contents, this
 program can cause SIGNIFICANT data loss.

 It is often helpful to have the installation notes handy. For complex disk
 configurations, relevant disk hardware manuals and a calculator are useful.

 Proceed with install? [no] y

If you take the default here, the install process will terminate and drop you to a shell prompt.

The installation notes referred to here are on the install CDs and FTP servers, in the file INSTALL.<plat>, where <plat> is
your platform, for instance, i386.

4.5.2 - Setting up disks

Important Note: Users with a large hard disk (larger than was commonly available when your computer was made) will want to
see this section before going any further.

Setting up disks in OpenBSD varies a bit between platforms. For i386, amd64, macppc, zaurus and armish, disk setup is done in
two stages. First, the OpenBSD slice of the hard disk is defined using fdisk(8), then that slice is subdivided into OpenBSD
partitions using disklabel(8).

http://www.openbsd.org/faq/faq4.html (7 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/faq/upgrade44.html
http://www.openbsd.org/plat.html
http://www.openbsd.org/i386.html
http://www.openbsd.org/amd64.html
http://www.openbsd.org/macppc.html
http://www.openbsd.org/zaurus.html
http://www.openbsd.org/armish.html

4 - OpenBSD 4.4 Installation Guide

Some users may be a little confused by the terminology used here. It will appear we are using the word "partition" in two different
ways. This observation is correct. There are two layers of partitioning in the above OpenBSD platforms, the first, one could
consider the Operating System partitioning, which is how multiple OSs on one computer mark out their own space on the disk,
and the second one is how the OpenBSD partition is sub-partitioned into individual filesystems. The first layer is visible as a disk
partition to DOS, Windows, and any other OS that uses this disk layout system, the second layer of partitioning is visible only to
OpenBSD and those OSs which can directly read an OpenBSD filesystem.

 Cool! Let's get to it.

 You will now initialize the disk(s) that OpenBSD will use. To enable all
 available security features you should configure the disk(s) to allow the
 creation of separate filesystems for /, /tmp, /var, /usr, and /home.

 Available disks are: wd0.
 Which one is the root disk? (or done) [wd0] Enter

The root disk is the disk the system will boot from, and normally where swap space resides. IDE disks will show up as wd0, wd1,
etc., SCSI disks and RAID devices will show up as sd0, sd1, and so on. All the disks OpenBSD can find are listed here -- if you
have drives which are not showing up, you have unsupported or improperly configured hardware.

 Do you want to use *all* of wd0 for OpenBSD? [no] Enter

If you say "yes" to this question, the entire disk will be allocated to OpenBSD. This will result in a standard Master Boot Record
and partition table being written out to disk -- one partition, the size of the entire hard disk, set to the OpenBSD partition type, and
flagged as the bootable partition. This will be a common choice for most production uses of OpenBSD; however, there are some
systems this should not be done on. Many Compaq systems, many laptops, some Dell and other systems use a "maintenance" or
"Suspend to Disk" partition, which should be kept intact. If your system has any other partitions of any type you do not wish to
erase, do not select "yes" to the above question. On the other hand, if your system has a brand new disk that has never been used,
you will probably want to say "yes" here (or use the "update" option of fdisk), so you do get a valid master boot record and
signature in place.

For the sake of this example, we will assume the disk is to be split between OpenBSD and a pre-existing Windows 2000 partition,
so we take the default of "no", which will take us into the fdisk(8) program. You can also get more information on fdisk(8) here.

Note: If you say "Y" to the "Do you want to use *all* of wd0 for OpenBSD?" question, or if you are using a platform which does
not use fdisk (for example, sparc64), you will not go through this step, but will rather jump directly to creating a disklabel

 You will now create a single MBR partition to contain your OpenBSD data. This
 partition must have an id of 'A6'; must *NOT* overlap other partitions; and
 must be marked as the only active partition.

 The 'manual' command describes all the fdisk commands in detail.

 Disk: wd0 geometry: 2434/255/63 [39102336 Sectors]
 Offset: 0 Signature: 0xAA55
 Starting Ending LBA Info:
 #: id C H S - C H S [start: size]

 *0: 0B 0 1 1 - 195 254 63 [63: 3148677] Win95 FAT-32

http://www.openbsd.org/faq/faq4.html (8 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=fdisk&sektion=8&arch=i386

4 - OpenBSD 4.4 Installation Guide

 1: 00 0 0 0 - 0 0 0 [0: 0] unused
 2: 00 0 0 0 - 0 0 0 [0: 0] unused
 3: 00 0 0 0 - 0 0 0 [0: 0] unused
 Enter 'help' for information
 fdisk: 1> help
 help Command help list
 manual Show entire OpenBSD man page for fdisk
 reinit Re-initialize loaded MBR (to defaults)
 setpid Set the identifier of a given table entry
 disk Edit current drive stats
 edit Edit given table entry
 flag Flag given table entry as bootable
 update Update machine code in loaded MBR
 select Select extended partition table entry MBR
 swap Swap two partition entries
 print Print loaded MBR partition table
 write Write loaded MBR to disk
 exit Exit edit of current MBR, without saving changes
 quit Quit edit of current MBR, saving current changes
 abort Abort program without saving current changes
 fdisk: 1>

A few commands are worthy of elaboration:

● r or reinit: Clears existing partition table, makes one big OpenBSD partition covering entire disk, flags it active, and
installs the OpenBSD MBR code. Equivalent to saying "yes" to the "use *all* of ..." question. You almost
certainly want to do this on a new disk.

● p or print: Displays the current partition table in sectors. "p m" will show the partition table in megabytes, "p g" will
show it in gigabytes.

● e or edit: edit or alter a table entry.
● f or flag: Marks a partition as the active partition, the one that will be booted from.
● u or update: Updates the MBR with the OpenBSD boot code, similar to "reinit", except it doesn't alter the existing

partition table.
● exit and quit: Careful on these, as some users are used to "exit" and "quit" having opposite meanings.

It is worth pointing out once again, an error here will result in significant data loss. If you are going to do this on a drive with
important data, it might be worth practicing on a "disposable" drive, in addition to having a good backup.

Our drive here has a 1.5G partition for Windows 2000 (using the FAT filesystem). Looking at the info from the above display, we
can see that the Windows partition occupies through cylinder 195 on the drive. So, we are going to allocate the rest of the disk to
OpenBSD, starting at cylinder 196. You could also calculate OpenBSD's starting sector of 3148740 by adding the existing
partition's starting sector (63) and its size (3148677).

You can edit the drive layout in either Cylinder/Heads/Sectors form or just raw sectors. Which is easier depends upon what you
are doing; in this case, working around an existing partition, using CHS format will probably be easier. If you are creating the first
partition on the disk, just using raw sectors may be easier.

http://www.openbsd.org/faq/faq4.html (9 of 32)4/29/2009 5:05:02 PM

4 - OpenBSD 4.4 Installation Guide

 fdisk: 1> e 1
 Starting Ending LBA Info:
 #: id C H S - C H S [start: size]

 1: 00 0 0 0 - 0 0 0 [0: 0] unused
 Partition id ('0' to disable) [0 - FF]: [0] (? for help) a6
 Do you wish to edit in CHS mode? [n] y
 BIOS Starting cylinder [0 - 2433]: [0] 196
 BIOS Starting head [0 - 254]: [0] Enter
 BIOS Starting sector [1 - 63]: [0] 1
 BIOS Ending cylinder [0 - 2433]: [0] 2433
 BIOS Ending head [0 - 254]: [0] 254
 BIOS Ending sector [1 - 63]: [0] 63
 fdisk:*1> p
 Disk: wd0 geometry: 2434/255/63 [39102336 Sectors]
 Offset: 0 Signature: 0xAA55
 Starting Ending LBA Info:
 #: id C H S - C H S [start: size]

 *0: 0B 0 1 1 - 195 254 63 [63: 3148677] Win95 FAT-32
 1: A6 196 0 1 - 2433 254 63 [3148740: 35953470] OpenBSD
 2: 00 0 0 0 - 0 0 0 [0: 0] unused
 3: 00 0 0 0 - 0 0 0 [0: 0] unused
 fdisk:*1> p m
 Disk: wd0 geometry: 2434/255/63 [19093 Megabytes]
 Offset: 0 Signature: 0xAA55
 Starting Ending LBA Info:
 #: id C H S - C H S [start: size]

 *0: 0B 0 1 1 - 195 254 63 [63: 1537M] Win95 FAT-32
 1: A6 196 0 1 - 2433 254 63 [3148740: 17555M] OpenBSD
 2: 00 0 0 0 - 0 0 0 [0: 0M] unused
 3: 00 0 0 0 - 0 0 0 [0: 0M] unused
 fdisk:*1>

On platforms which use fdisk, it is important that the first partition skips the first track of the disk, in this case, starting on sector
63. This will vary from machine to machine and disk system to disk system. If an OpenBSD partition is created starting at offset
0, this partition table will end up being overwritten by the OpenBSD partition's Partition Boot Record. The system may still be
bootable, but it will be very difficult to maintain, and this configuration is not recommended or supported.

Note that the prompt changed to include an asterisk ('*') to indicate you have unsaved changes. As we can see from the output of
p m we have not altered our Windows partition, we have successfully allocated the rest of the drive for OpenBSD, and the
partitions do not overlap. We are in business. Almost.

What we haven't done is flagged the partition as active so the machine will boot OpenBSD on the next reboot:

http://www.openbsd.org/faq/faq4.html (10 of 32)4/29/2009 5:05:02 PM

4 - OpenBSD 4.4 Installation Guide

 fdisk:*1> f 1
 Partition 1 marked active.
 fdisk:*1> p
 Disk: wd0 geometry: 2434/255/63 [39102336 Sectors]
 Offset: 0 Signature: 0xAA55
 Starting Ending LBA Info:
 #: id C H S - C H S [start: size]

 0: 0B 0 1 1 - 195 254 63 [63: 3148677] Win95 FAT-32
 *1: A6 196 0 1 - 2433 254 63 [3148740: 35953470] OpenBSD
 2: 00 0 0 0 - 0 0 0 [0: 0] unused
 3: 00 0 0 0 - 0 0 0 [0: 0] unused
 fdisk:*1>

And now, we are ready to save our changes:

 fdisk:*1> w
 Writing MBR at offset 0.
 wd0: no disk label
 fdisk: 1> q

Creating a disklabel

The next step is to use disklabel(8) to slice up the OpenBSD partition. More details on using disklabel(8) can be found in FAQ 14,
disklabel.

 Here is the partition information you chose:

 Disk: wd0 geometry: 2586/240/63 [39100320 Sectors]
 Offset: 0 Signature: 0xAA55
 Starting Ending LBA Info:
 #: id C H S - C H S [start: size]
 --
 0: 0B 0 1 1 - 202 239 63 [63: 3069297] Win95 FAT-32
 *1: A6 203 0 1 - 2585 239 63 [3069360: 36030960] OpenBSD
 2: 00 0 0 0 - 0 0 0 [0: 0] unused
 3: 00 0 0 0 - 0 0 0 [0: 0] unused

 You will now create an OpenBSD disklabel inside the OpenBSD MBR
 partition. The disklabel defines how OpenBSD splits up the MBR partition
 into OpenBSD partitions in which filesystems and swap space are created.

 The offsets used in the disklabel are ABSOLUTE, i.e. relative to the
 start of the disk, NOT the start of the OpenBSD MBR partition.

 # Inside MBR partition 1: type A6 start 3148740 size 35953470
 Treating sectors 3148740-39102210 as the OpenBSD portion of the disk.
 You can use the 'b' command to change this.

 Initial label editor (enter '?' for help at any prompt)

http://www.openbsd.org/faq/faq4.html (11 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=disklabel&sektion=8

4 - OpenBSD 4.4 Installation Guide

 > ?
 Available commands:
 ? [command] - show help n [part] - set mount point
 a [part] - add partition p [unit] - print partitions
 b - set OpenBSD boundaries q - quit & save changes
 c [part] - change partition size r - display free space
 D - reset label to default s [path] - save label to file
 d [part] - delete partition u - undo last change
 e - edit drive parameters w - write label to disk
 g [d | u] - [d]isk or [u]ser geometry X - toggle expert mode
 l [unit] - print disk label header x - exit & lose changes
 M - disklabel(8) man page z - delete all partitions
 m [part] - modify partition

 Suffixes can be used to indicate units other than sectors:
 'b' (bytes), 'k' (kilobytes), 'm' (megabytes), 'g' (gigabytes)
 'c' (cylinders), '%' (% of total disk), '&' (% of free space).
 Values in non-sector units are truncated to the nearest cylinder boundary.
 >

Again, a few of these commands could use a little elaboration:

● p - displays (prints) the current disklabel to the screen, and you can use the modifiers k, m or g for kilobytes, megabytes
or gigabytes.

● D - Clears any existing disklabel, creates a new default disklabel which covers just the current OpenBSD partition. This can
be useful if the disk previously had a disklabel on it, and the OpenBSD partition was recreated to a different size -- the old
disk label may not get deleted, and may cause confusion.

● m - Modifies an existing entry in a disklabel. Do not over estimate what this will do for you. While it may alter the size of a
disklabel partition, it does NOT alter the filesystem on the drive. Using this option and expecting it to magically resize
existing partitions is a good way of losing large amounts of data. However, this option and growfs(8) can be used to
enlarge a partition.

Slicing up your disk properly is important. The answer to the question, "How should I partition my system?" is "Exactly how you
need it". This will vary from application to application. There is no universal answer. If you are unsure of how you want to
partition your system, see this discussion.

In this system, we have over 17G available for OpenBSD. That's a lot of space, and it isn't likely we will need most of it. So, we
will deliberately not use absolute minimum sizes. We would rather have a few hundred megabytes of unused space than a kilobyte
too little.

On the root disk, an 'a' partition must be created for the root filesystem (/). The installation process can not proceed without it.
Generally, you will want to have a swap partition, 'b', though if you are sure your system will never exhaust real memory, you can
leave it off. If a 'b' partition exists on the root disk, it will automatically be used for swap. Swap partitions on other disks will have
to be manually added to /etc/fstab.

After a little thought, we decide to create just enough partitions to allow the creation of the recommended separate filesystems
(/, /tmp, /var, /usr, /home) along with a swap partition:

● wd0a: / (root) - 150M. Should be more than enough.
● wd0b: (swap) - 300M.
● wd0d: /tmp - 120M. /tmp is used for building some software, 120M will probably be enough for most things.

http://www.openbsd.org/faq/faq4.html (12 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=growfs&sektion=8

4 - OpenBSD 4.4 Installation Guide

● wd0e: /var - 80M. If this were to be a web or mail server, we'd have made this partition much larger, but, that's not what we
are doing.

● wd0g: /usr - 6G. We want this partition to be large enough to load a few user applications, plus be able to update and
rebuild the system by source if desired or needed. The Ports tree will be here as well, which will take almost 250M of this
space before ports are built. If one was planning on building many applications from source using ports rather than pre-
built packages, you might want a lot more space here.

● wd0h: /home - 4G. This will allow plenty of user file space.

Now, if you add those up, you will see over 6G of space is unused! Unused space won't hurt anything, and it gives us flexibility to
enlarge things in the future if need be. Need more /tmp? Create a new partition in the unused space, format the new partition with
newfs(8), and change /etc/fstab to mount the new partition onto /tmp. Problem solved.

 > p m
 # size offset fstype [fsize bsize cpg]
 OpenBSD area: 1537.5M-19092.9M; size: 17555.4M; free: 17555.4M
 c: 19092.9M 0.0M unused 0 0
 i: 1498.7M 0.0M MSDOS
 > a a
 offset: [3148740] Enter
 size: [35953470] 150m
 Rounding to cylinder: 321300
 FS type: [4.2BSD] Enter
 mount point: [none] /
 > a b
 offset: [3470040] Enter
 size: [35632170] 300m
 Rounding to cylinder: 626535
 FS type: [swap] Enter
 > a d
 offset: [4096575] Enter
 size: [35005635] 120m
 Rounding to cylinder: 257040
 FS type: [4.2BSD] Enter
 mount point: [none] /tmp
 > a e
 offset: [4353615] Enter
 size: [34748595] 80m
 Rounding to cylinder: 176715
 FS type: [4.2BSD] Enter
 mount point: [none] /var
 > a g
 offset: [4530330] Enter
 size: [34571880] 6g
 Rounding to cylinder: 12594960
 FS type: [4.2BSD] Enter
 mount point: [none] /usr
 > a h
 offset: [17125290] Enter
 size: [21976920] 4g
 Rounding to nearest cylinder: 8401995
 FS type: [4.2BSD] Enter
 mount point: [none] /home
 > p m

http://www.openbsd.org/faq/faq4.html (13 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=newfs&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=fstab&sektion=5

4 - OpenBSD 4.4 Installation Guide

 OpenBSD area: 1537.5M-19092.9M; size: 17555.4M; free: 6628.4M
 # size offset fstype [fsize bsize cpg]
 a: 156.9M 1537.5M 4.2BSD 2048 16384 1 # /
 b: 305.9M 1694.4M swap
 c: 19092.9M 0.0M unused 0 0
 d: 125.5M 2000.3M 4.2BSD 2048 16384 1 # /tmp
 e: 86.3M 2125.8M 4.2BSD 2048 16384 1 # /var
 g: 6149.9M 2212.1M 4.2BSD 2048 16384 1 # /usr
 h: 4102.5M 8362.0M 4.2BSD 2048 16384 1 # /home
 i: 1537.4M 0.0M MSDOS
 > q
 Write new label?: [y] Enter

You will note there is a c partition we seem to have ignored. This partition is your entire hard disk; don't attempt to alter it. You
will also note the i partition wasn't defined by us; this is the pre-existing Windows 2000 partition. Partitions are not assigned any
particular letters -- with the exception of a (root), b (swap) and c (entire disk), the rest of the partitions (through letter p) are
available for use as you desire.

Configuring your mount points and formatting your filesystems

Now comes the final configuration of your mount points. If you configured the mount points through disklabel(8), this step
consists of just verifying your selections; otherwise, you can specify them now.

 Mount point for wd0d (131584 KBytes)? (or 'none' or 'done') [/tmp] Enter
 Mount point for wd0e (90624 KBytes)? (or 'none' or 'done') [/var] Enter
 Mount point for wd0g (6656 MBytes)? (or 'none' or 'done') [/usr] Enter
 Mount point for wd0h (4096 MBytes)? (or 'none' or 'done') [/home] Enter
 Mount point for wd0d (131584 KBytes)? (or 'none' or 'done') [/tmp] done
 No more disks to initialize.

 OpenBSD filesystems:
 wd0a /
 wd0d /tmp
 wd0e /var
 wd0g /usr
 wd0h /home

 The next step *DESTROYS* all existing data on these partitions!
 Are you really sure that you're ready to proceed? [no] y
 newfs: reduced number of fragments per cylinder group from 20080 to 19992 to enl
 arge last cylinder group
 /dev/rwd0a: 156.9MB in 321300 sectors of 512 bytes
 5 cylinder groups of 39.05MB, 2499 blocks, 5120 inodes each
 newfs: reduced number of fragments per cylinder group from 16064 to 15992 to enl
 arge last cylinder group
 /dev/rwd0d: 125.5MB in 257040 sectors of 512 bytes
 5 cylinder groups of 31.23MB, 1999 blocks, 4096 inodes each
 newfs: reduced number of fragments per cylinder group from 11040 to 10992 to enl
 arge last cylinder group
 /dev/rwd0e: 86.3MB in 176712 sectors of 512 bytes
 5 cylinder groups of 21.47MB, 1374 blocks, 2816 inodes each

http://www.openbsd.org/faq/faq4.html (14 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=disklabel&sektion=8

4 - OpenBSD 4.4 Installation Guide

 /dev/rwd0g: 6149.9MB in 12594960 sectors of 512 bytes
 31 cylinder groups of 202.47MB, 12958 blocks, 25984 inodes each
 /dev/rwd0h: 4102.5MB in 8401992 sectors of 512 bytes
 21 cylinder groups of 202.47MB, 12958 blocks, 25984 inodes each
 /dev/wd0a on /mnt type ffs (rw, asynchronous, local, ctime=Tue Oct 21 00:36:28 2
 008)
 /dev/wd0h on /mnt/home type ffs (rw, asynchronous, local, nodev, nosuid, ctime=T
 ue Oct 21 00:36:28 2008)
 /dev/wd0d on /mnt/tmp type ffs (rw, asynchronous, local, nodev, nosuid, ctime=Tu
 e Oct 21 00:36:28 2008)
 /dev/wd0g on /mnt/usr type ffs (rw, asynchronous, local, nodev, ctime=Tue Oct 21
 00:36:28 2008)
 /dev/wd0e on /mnt/var type ffs (rw, asynchronous, local, nodev, nosuid, ctime=Tu
 e Oct 21 00:36:28 2008)

You may wonder why the installer again asks for mount points. This allows you to recover from any errors or omissions in the
mount points specified during the creation of the disklabel. For instance, the installation process will automatically delete any
duplicate mount points you enter during the configuration of the disklabel. The disklabel program will allow you to enter such
duplicates, and thus they must be checked for after the disklabel program exits. The deleted duplicate mount points will result in
partitions without mount points, that you must assign new mount points for if you wish to use the space.

Notice the "Are you really sure that you are ready to proceed?" question defaults to no, so you will have to deliberately tell it to
proceed and format your partitions. If you chose no, you would simply be dropped into a shell and could start the install again by
typing "install", or just by rebooting again with your boot disk.

At this point all filesystems will be formatted for you. This could take some time depending on the size of the partitions and the
speed of the disk.

4.5.3 - Setting the system hostname

Now you must set the system hostname. This value, along with the DNS domain name (specified below), will be saved in the file /
etc/myname, which is used during normal boot to set the hostname of the system. If you do not set the domain name of the
system, the default value of 'my.domain' will be used.

It is important to set this name now, because it will be used when the cryptographic keys for the system are generated during the
first boot after installation. This generation takes place whether the network is configured or not.

 System hostname (short form, e.g. 'foo'): puffy

4.5.4 - Configuring the network

Now it is time to configure your network. The network must be configured if you are planning on doing an FTP or NFS based
install, considering it will be based upon the information you are about to enter. Here is a walk through of the network
configuration section of the install process. In our example, we will attach one interface (fxp0) to a cable modem, which will be
configured using DHCP, the other will be to our internal network, and configured statically.

http://www.openbsd.org/faq/faq4.html (15 of 32)4/29/2009 5:05:02 PM

4 - OpenBSD 4.4 Installation Guide

 Configure the network? [yes] Enter
 Available interfaces are: fxp0 xl0.
 Which one do you wish to initialize? (or 'done') [fxp0] xl0
 Symbolic (host) name for xl0? [puffy] Enter
 The media options for xl0 are currently
 media: Ethernet autoselect (100baseTX full-duplex)
 Do you want to change the media options? [no] Enter
 IPv4 address for xl0? (or 'dhcp') 192.168.1.254
 Netmask? [255.255.255.0] Enter
 IPv6 address for xl0? (or 'rtsol' or 'none') [none] Enter
 Available interfaces are: fxp0.
 Which one do you wish to initialize? (or 'done') [fxp0] Enter
 Symbolic (host) name for fxp0? [puffy] Enter
 The media options for fxp0 are currently
 media: Ethernet autoselect (10baseT half-duplex)
 Do you want to change the media options? [no] Enter
 IPv4 address for fxp0? (or 'none' or 'dhcp') dhcp
 Issuing hostname-associated DHCP request for fxp0.
 DHCPDISCOVER on fxp0 to 255.255.255.255 port 67 interval 1
 DHCPOFFER from 73.34.136.1
 DHCPREQUEST on fxp0 to 255.255.255.255 port 67
 DHCPACK from 73.34.136.1
 bound to 69.241.244.76 -- renewal in 1800 seconds.
 IPv6 address for fxp0? (or 'rtsol' or 'none') [none] Enter
 No more interfaces to initialize.
 DNS domain name? (e.g. 'bar.com') [my.domain] example.com
 DNS nameserver? (IP address or 'none') [68.87.77.130 68.87.72.130 68.87.75.194] Enter
 Use the nameserver now? [yes] Enter
 Default route? (IP address, 'dhcp' or 'none') [dhcp] Enter
 Edit hosts with ed? [no] Enter
 Do you want to do any manual network configuration? [no] Enter

NOTE: Only one interface can easily be configured using DHCP during an install. If you attempt to configure more than one
interface using DHCP you will encounter errors. You will have to manually configure the additional DHCP interfaces after the
installation.

Now, we set the password for the root account:

Password for root account? (will not echo) pAssWOrd
Password for root account? (again) pAssWOrd

Use a secure password for the root account. You will create other user accounts after the system is booted. From passwd(1):

 The new password should be at least six characters long and not purely
 alphabetic. Its total length must be less than _PASSWORD_LEN (currently
 128 characters). A mixture of both lower and uppercase letters, numbers,
 and meta-characters is encouraged.

4.5.5 - Choosing installation media

http://www.openbsd.org/faq/faq4.html (16 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=passwd&sektion=1

4 - OpenBSD 4.4 Installation Guide

After your network is set up, the install script will give you a chance to make manual adjustments to the configuration.

Next, you will get a chance to choose your installation media. The options are listed below.

 Let's install the sets!
 Location of sets? (cd disk ftp http or 'done') [cd] Enter
 Available CD-ROMs are: cd0.

In this example we are installing from CD-ROM. This will bring up a list of devices on your computer identified as a CD-ROM.
Most people will only have one. If you need to, make sure you pick the device which you will use to install OpenBSD from.

NOTE: Not all platforms support all installation options. In this case, the OpenBSD/i386 platform does not support NFS installs,
so they are not shown on this list.

 Available CD-ROMs are: cd0.
 Which one contains the install media? (or 'done') [cd0] Enter
 Pathname to the sets? (or 'done') [4.4/i386] Enter

Here, you are prompted for which directory the installation files are, which is 4.4/i386/ on the official CD-ROM or a CD built
from install44.iso.

4.5.6 - Choosing file sets.

Now it's time to choose which file sets you will be installing. You can get a description of these files in the next section. The files
that the install program finds will be shown to you on the screen. Your job is just to specify which files you want. By default all
the non-X file sets are selected; however, some advanced users may wish to limit this to the bare minimum required to run
OpenBSD, which would be base44.tgz, etc44.tgz and bsd. Most people will want to install the default file sets or all file
sets. The example below is that of a full install.

 Select sets by entering a set name, a file name pattern or 'all'. De-select
 sets by prepending a '-' to the set name, file name pattern or 'all'. Selected
 sets are labeled '[x]'.

 [X] bsd
 [X] bsd.rd
 [] bsd.mp
 [X] base44.tgz
 [X] etc44.tgz
 [X] misc44.tgz
 [X] comp44.tgz
 [X] man44.tgz
 [X] game44.tgz
 [] xbase44.tgz
 [] xetc44.tgz
 [] xshare44.tgz
 [] xfont44.tgz
 [] xserv44.tgz
 Set name? (or 'done') [bsd.mp] all

http://www.openbsd.org/faq/faq4.html (17 of 32)4/29/2009 5:05:02 PM

4 - OpenBSD 4.4 Installation Guide

 [X] bsd
 [X] bsd.rd
 [X] bsd.mp
 [X] base44.tgz
 [X] etc44.tgz
 [X] misc44.tgz
 [X] comp44.tgz
 [X] man44.tgz
 [X] game44.tgz
 [X] xbase44.tgz
 [X] xetc44.tgz
 [X] xshare44.tgz
 [X] xfont44.tgz
 [X] xserv44.tgz

You can do all kinds of nifty things here -- "-x*" would remove all X components, if you changed your mind. In this case, we are
going to load all the sets. While the system will run with fewer sets, either the starting default or installing all sets is
recommended. More details on selecting sets here.

Once you have successfully picked which file sets you want, you will be prompted to make sure you want to extract these file sets
and they will then be installed. A progress bar will be shown that will keep you informed on how much time it will take. The times
range greatly depending on what system it is you are installing OpenBSD on, the file sets installed, and the speed of the source
media. This part may take from a few minutes to several hours.

 Set name? (or 'done') [done] Enter
 Ready to install sets? [yes] Enter
 Getting bsd ...
 100% |**| 6700 KB
00:03
 Getting bsd.rd ...
 100% |**| 5404 KB
00:01
 Getting bsd.mp ...
 100% |**| 6750 KB
00:02
 Getting base44.tgz ...
 100% |**| 42904 KB
00:27
 Getting etc44.tgz ...
 100% |**| 631 KB
00:00
 Getting misc44.tgz ...
 100% |**| 2866 KB
00:02
 Getting comp44.tgz ...
 100% |**| 78575 KB
00:43
 Getting man44.tgz ...
 100% |**| 7552 KB
00:07
 Getting game44.tgz ...
 100% |**| 2552 KB

http://www.openbsd.org/faq/faq4.html (18 of 32)4/29/2009 5:05:02 PM

4 - OpenBSD 4.4 Installation Guide

00:01
 Getting xbase44.tgz ...
 100% |**| 9486 KB
00:05
 Getting xetc44.tgz ...
 100% |**| 75434
00:00
 Getting xshare44.tgz ...
 100% |**| 2672 KB
00:05
 Getting xfont44.tgz ...
 100% |**| 34747 KB
00:16
 Getting xserv44.tgz ...
 100% |**| 19816 KB
00:10
 Location of sets? (cd disk ftp http or 'done') [done] Enter

At this point, you can pull additional files from other sources (including custom file sets) if desired, or hit 'done' if you have
installed all the file sets you need.

4.5.7 - Finishing up

Next, you get asked a few questions about settings for your installed system. First is whether sshd(8) should be started on boot.
Usually, you will want sshd(8) running, but occasionally you may not. If your application has no need for sshd(8), there is a small
theoretical security advantage to not having it running.

 Start sshd(8) by default? [yes] y

(If you change your mind later, alter /etc/rc.conf.local or /etc/rc.conf.)

You will be given the option to run OpenNTPD on boot. OpenNTPD is a low-impact way to keep your computer's clock
accurately synchronized, and the default configuration is sufficient for many people's use.

 Start ntpd(8) by default? [no] yes
 NTP server? (hostname or 'default') [default] Enter

If you have a local time server, you can specify it here, if you chose "default", OpenNTPD will use pool.ntp.org, a huge
collection of free access time servers. (If you change your mind later, alter /etc/rc.conf.local and/or /etc/ntpd.
conf.)

On some platforms, you will now be asked if you plan to run X on this system. If you answer 'Y', /etc/sysctl.conf will be
modified to include the line machdep.allowaperture=1 or machdep.allowaperture=2, depending on your platform.
Some platforms will not ask this question at all. If you do not intend to run X on this system or are not sure, answer 'N' here, as
you can easily change it by editing /etc/sysctl.conf should you need to later. There is a potential security advantage to
leaving this aperture driver xf86(4) disabled, as the graphics engine on a modern video card could potentially be used to alter
memory beyond the processor's control.

http://www.openbsd.org/faq/faq4.html (19 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=sshd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=xf86&sektion=4

4 - OpenBSD 4.4 Installation Guide

 Do you expect to run the X Window System? [no] y

Next, you are asked if you are wanting to use a serial console with this computer, rather than a standard keyboard and monitor. If
you chose "yes" and answer a couple other simple questions, /etc/boot.conf and /etc/ttys will be edited appropriately
for you. Most users will take the default, no here.

 Change the default console to com0? [no] Enter

Your last task is to enter the time zone. Depending on where your machine lives, there are may be several equally valid answers
for the question. In the example that follows, we used US/Eastern, but could also have used EST5EDT or US/Michigan and
had the same result. Hitting ? at the prompts will guide you through your choices.

 Saving configuration files......done.
 Generating initial host.random filedone.
 What timezone are you in? ('?' for list) [Canada/Mountain] ?
 Africa/ Chile/ GB-Eire Israel NZ-CHAT UCT
 America/ Cuba GMT Jamaica Navajo US/
 Antarctica/ EET GMT+0 Japan PRC UTC
 Arctic/ EST GMT-0 Kwajalein PST8PDT Universal
 Asia/ EST5EDT GMT0 Libya Pacific/ W-SU
 Atlantic/ Egypt Greenwich MET Poland WET
 Australia/ Eire HST MST Portugal Zulu
 Brazil/ Etc/ Hongkong MST7MDT ROC posix/
 CET Europe/ Iceland Mexico/ ROK posixrules
 CST6CDT Factory Indian/ Mideast/ Singapore right/
 Canada/ GB Iran NZ Turkey zone.tab
 What timezone are you in? ('?' for list) [Canada/Mountain] US
 What sub-timezone of 'US' are you in? ('?' for list) ?
 Alaska Central Hawaii Mountain Samoa
 Aleutian East-Indiana Indiana-Starke Pacific
 Arizona Eastern Michigan Pacific-New
 Select a sub-timezone of 'US' ('?' for list): Eastern
 Setting local timezone to 'US/Eastern'...done.

If you are concerned about very precise time, you may wish to read this.

The last steps are for the system to create the /dev directory (which may take a while on some systems, especially if you have a
small amount of RAM), and install the boot blocks.

http://www.openbsd.org/faq/faq4.html (20 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=boot.conf&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ttys&sektion=5

4 - OpenBSD 4.4 Installation Guide

 Making all device nodes...done.
 Installing boot block...
 boot: /mnt/boot
 proto: /usr/mdec/biosboot
 device: /dev/rwd0c
 /usr/mdec/biosboot: entry point 0
 proto bootblock size 512
 /mnt/boot is 3 blocks x 16384 bytes
 fs block shift 2; part offset 3148740; inode block 24, offset 1832
 using MBR partition 1: type 166 (0xa6) offset 3148740 (0x300bc4)
 done.

 CONGRATULATIONS! Your OpenBSD install has been successfully completed!
 To boot the new system, enter halt at the command prompt. Once the
 system has halted, reset the machine and boot from the disk.
 # halt
 syncing disks... done

 The operating system has halted.
 Please press any key to reboot.

OpenBSD is now installed on your system and ready for its first boot, but before you do...

Before you reboot

At this point, your system is installed and ready to be rebooted and configured for service. Before doing this, however, it would be
wise to check out the Errata page to see if there are any bugs that would immediately impact you.

A trick you can use for some "before first boot" configuration is to run:

 # /mnt/usr/sbin/chroot /mnt

at the shell prompt. This will set your mount points to be what they will be on a normal reboot of your newly installed system.
You can now do some basic system configuration, such as adding users, changing mount points, etc.

After you reboot

One of your first things to read after you install your system is afterboot(8).

You may also find the following links useful:

● Adding users in OpenBSD
● Initial Network Setup
● Man Pages of popular/useful commands
● OpenBSD man pages on the Web
● The OpenBSD Packages and Ports system for installing software

One last thing...

The OpenBSD developers ask you to Send in a copy of your dmesg. This is really appreciated by the developers, and ultimately,

http://www.openbsd.org/faq/faq4.html (21 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/errata.html
http://www.openbsd.org/cgi-bin/man.cgi?query=afterboot&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi

4 - OpenBSD 4.4 Installation Guide

all users.

4.6 - What files are needed for installation?

The complete OpenBSD installation is broken up into a number of separate file sets. Not every application requires every file set.
Here is an overview of each:

● bsd - This is the Kernel. Required
● bsd.mp - Multi-processor (SMP) kernel (only some platforms)
● bsd.rd - RAM disk kernel
● base44.tgz - Contains the base OpenBSD system Required
● etc44.tgz - Contains all the files in /etc Required
● comp44.tgz - Contains the compiler and its tools, headers and libraries. Recommended
● man44.tgz - Contains man pages Recommended
● misc44.tgz - Contains misc info, setup documentation
● game44.tgz - Contains the games for OpenBSD
● xbase44.tgz - Contains the base libraries and utilities for X11
● xetc44.tgz - Contains the /etc/X11 and /etc/fonts configuration files
● xfont44.tgz - Contains X11's font server and fonts
● xserv44.tgz - Contains X11's X servers
● xshare44.tgz - Contains manpages, locale settings, includes, etc. for X

The etc44.tgz and xetc44.tgz sets are not installed as part of an upgrade, only as part of a complete install, so any customizations
you make will not be lost. You will have to update your /etc, /dev and /var directories manually.

Why do I have to install xbase44.tgz for my application?

Even if you have no intention of running X, some third party packages require the libraries or other utilities in xbase44.tgz to be
installed on your system. These applications can usually be satisfied simply by installing xbase44.tgz, the rest of X is not needed.
Many people resist installing xbase44.tgz on their system without valid reason:

● By itself, installing xbase44.tgz does not cause any program to execute on the system.
● By itself, installing xbase44.tgz on a system does not change the risk of external security issues.
● If someone is already ON your system, they can most likely install whatever they wish, so the presence or absence of the

xbase44.tgz file set does not appreciably change the situation.
● The only parts of xbase44.tgz that are running are the parts required by your application.
● The space required for xbase44.tgz is relatively modest, about 30M.

People sometimes waste a lot of time and effort trying to pick through xbase44.tgz and pull out just the files they need to install
their application. This is not only pointless, but an effort that would have to be repeated for each upgrade cycle, which probably
means you will not upgrade your system properly, creating REAL security problems.

IF you need xbase44.tgz, just install it. It won't hurt you any more than the application you are needing it for will. Note that
compiling from source will often require more of X to be installed, but the above points still apply.

4.7 - How much space do I need for an OpenBSD installation?

Obviously, the answer to this question varies tremendously based on your use of the system. However, these numbers can be used
as a starting point:

(root) 60MB

http://www.openbsd.org/faq/faq4.html (22 of 32)4/29/2009 5:05:02 PM

4 - OpenBSD 4.4 Installation Guide

/usr 500MB (no X) or 660MB (with X)
/var 25MB
/tmp 50MB
swap 32MB

Those are minimum suggested filesystem sizes for a full system install. The numbers include enough extra space to permit you to
run a typical home system that is connected to the Internet, but not much else.

Keep the following facts in mind, however:

● These are minimum values. Disk space is relatively cheap now, trying to squeeze your system into the smallest possible
disk is rarely worth the effort. For special purpose applications, the above numbers can be made smaller, but you will need
to experiment with it.

● These numbers do NOT include the ports tree.
● If you plan to install a significant amount of third party software, make your /usr partition much larger. How large will

depend on your applications, of course.
● For a system that handles lots of email or web pages (stored, respectively, in /var/mail and /var/www) you will want

to make your /var partition significantly larger, or put them on separate partitions.
● For a multiuser system which may generate lots of logs, you will want to make your /var partition significantly larger

still, or create a separate log partition (/var/log).
● If you plan to rebuild the kernel and system from source, you will want to make the /usr partition significantly larger, 4G

is not a bad size.
● Compiling some ports from source can take huge amounts of space on your /usr and /tmp partitions. This is another

reason we suggest using pre-compiled packages instead.
● The /tmp partition is used in the compiling of ports, among other things, so how big you make it depends on what you do

with it. 50M may be plenty for most people, but some large applications may require 100M or more of /tmp space.
● The 'b' partition of your root drive automatically becomes your system swap partition. Many people follow an old rule of

thumb that your swap partition should be twice the size of your main system RAM. This rule is nonsense. On a modern
system, that's a LOT of swap, most people prefer that their systems never swap. You don't want your system to ever run out
of RAM+swap, but you usually would rather have enough RAM in the system so it doesn't need to swap. If you are using a
flash device for disk, you probably want no swap partition at all. Use what is appropriate for your needs. If you guess
wrong, you can add another swap partition in /etc/fstab or swap to a file later.

● Swap and /var spaces are used to store system core dumps on in the event of a crash(8). If this is a consideration for you,
your swap space should be slightly larger than the amount of main memory you are likely to ever have in the system. Upon
reboot, savecore(8) will attempt to save the contents of the swap partition to a file in /var/crash so again, if this is a
priority for you, your /var partition must have enough free space to hold these dump files. Be realistic -- few developers
will want to look at your 1GB dump file, so if you aren't planning on investigating a crash locally, this is probably not a
concern.

● At least some editors use /var/tmp for scratch space, and this often needs to be as big or bigger than the largest file you
edit. If you plan on editing 500M files, your /var or /var/tmp partition will need to be much larger than you might
have planned on.

There are several reasons for using separate filesystems, instead of shoving everything into one or two filesystems:

● Security: You can mark some filesystems as 'nosuid', 'nodev', 'noexec', 'readonly', etc. This is done by the install process, if
you use the above described partitions.

● Stability: A user, or a misbehaved program, can fill a filesystem with garbage if they have write permissions for it. Your
critical programs, which of course run on a different filesystem, do not get interrupted.

● Speed: A filesystem which gets written to frequently may get somewhat fragmented. (Luckily, the ffs filesystem that
OpenBSD uses is not prone to heavy fragmentation.)

● Integrity: If one filesystem is corrupted for some reason then your other filesystems are still OK.
● Size: Many machines have limits on the area of a disk where the boot ROM can load the kernel from. In some cases, this

http://www.openbsd.org/faq/faq4.html (23 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=crash&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=savecore&sektion=8

4 - OpenBSD 4.4 Installation Guide

limit may be very small (504M for an older 486), in other cases, a much larger limit (for example, 2G, 8G, or 128G on i386
systems). As the kernel can end up anywhere within the root partition, the entire root partition should be within this area.
For more details, see this section. A good guideline might be to keep your / partition completely below 2G, unless you
know your platform (and particular machine) can handle more (or less) than that.

Some additional thoughts on partitioning:

● For your first attempt at an experimentation system, one big / partition and swap may be easiest until you know how much
space you need. By doing this you will be sacrificing some of the default security features of OpenBSD that require
separate filesystems for /, /tmp, /var, /usr and /home. However, you probably should not be going into
production with your first OpenBSD install.

● A system exposed to the Internet or other hostile forces should have a separate /var (and maybe even a separate /var/
log) for logging.

● A /home partition can be nice. New version of the OS? Wipe and reload everything else, leave your /home partition
untouched. Remember to save a copy of your configuration files, though!

● A separate partition for anything which may accumulate a large quantity of files that may need to be deleted can be faster
to reformat and recreate than to delete. See the building by source FAQ for an example (/usr/obj).

● If you wish to rebuild your system from source for any reason, the source will be in /usr/src. If you don't make a
separate partition for /usr/src, make sure /usr has sufficient space.

● A commonly forgotten fact: you do not have to allocate all space on a drive when you set the system up! Since you will
now find it a challenge to buy a new drive smaller than 20G, it can make sense to leave a chunk of your drive unallocated.
If you outgrow a partition, you can allocate a new partition from your unused space, duplicate your existing partition to the
new partition, change /etc/fstab to point to the new partition, remount, you now have more space.

● If you make your partitions too close to the minimum size required, you will probably regret it later, when it is time to
upgrade your system.

● If you make very large partitions, keep in mind that performing filesystem checks using fsck(8) requires about 1M of RAM
per gigabyte of filesystem size, and may be very time-consuming or not even feasible on older, slower systems (please also
refer to this section).

● If you permit users to write to /var/www (i.e., personal web pages), you might wish to put it on a separate partition, so
you can use quotas to restrict the space they use, and if they fill the partition, no other parts of your system will be
impacted.

● You may also want to create an /altroot partition, as described in daily(8). This can make a daily copy of your /
partition, giving you an extra copy of your kernel and /etc configuration files should something happen to your root
partition. Obviously, the /altroot partition needs to be at least as big as /. If you have a second drive and have
something else duplicating the rest of your disk, either software raid(4) or a periodic copy using dump(8)/restore(8), this
disk can be bootable after the removal of the primary disk.

4.8 - Multibooting OpenBSD/i386

Multibooting is having several operating systems on one computer, and some means of selecting the which OS is to boot. It is not
a trivial task! If you don't understand what you are doing, you may end up deleting large amounts of data from your computer.
New OpenBSD users are strongly encouraged to start with a blank hard drive on a dedicated machine, and then practice your
desired configuration on a non-production system before attempting a multiboot configuration on a production machine. FAQ 14
has more information about the OpenBSD boot process.

Only one of the four primary MBR partitions can be used for booting OpenBSD (i.e., extended partitions will not work).

Here are several options to multibooting:

Setting active partitions

http://www.openbsd.org/faq/faq4.html (24 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=fstab&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=fsck&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=daily&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=raid&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=dump&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=restore&sektion=8

4 - OpenBSD 4.4 Installation Guide

This is probably the most overlooked, and yet, sometimes the best solution for multibooting. Simply set the active partition in
whatever OS you are currently using to be the one you want to boot by default when you next boot. Virtually every OS offers a
program to do this; OpenBSD's is fdisk(8), similar named programs are in Windows 9x and DOS, and many other operating
systems. This can be highly desirable for OSs or systems which take a long time to shut down and reboot -- you can set it and start
the reboot process, then walk away, grab a cup of coffee, and come back to the system booted the way you want it -- no waiting
for the Magic Moment to select the next OS.

Boot floppy

If you have a system that is used to boot OpenBSD infrequently (or don't wish other users of the computer to note anything has
changed), consider using a boot floppy. Simply use one of the standard OpenBSD install floppies, and create an /etc/boot.
conf file (yes, you will also have to create an /etc directory on the floppy) with the contents:

 boot hd0a:/bsd

to cause the system to boot from hard drive 0, OpenBSD partition 'a', kernel file /bsd. Note you can also boot from other drives
with a line like: "boot hd2a:/bsd" to boot off the third hard drive on your system. To boot from OpenBSD, slip your floppy
in, reboot. To boot from the other OS, eject the floppy, reboot.

In this case, the boot(8) program is loaded from the floppy, looks for and reads /etc/boot.conf. The "boot hd0a:/bsd"
line instructs boot(8) where to load the kernel from -- in this case, the first HD the BIOS sees. Keep in mind, only a small file (/
boot) is loaded from the floppy -- the system loads the entire kernel off the hard disk, so this only adds about five seconds to the
boot process.

Windows NT/2000/XP NTLDR

To multiboot OpenBSD and Windows NT/2000/XP, you can use NTLDR, the boot loader that NT uses. To multi-boot with NT,
you need a copy of your OpenBSD Partition Boot Record (PBR). After running installboot, you can copy it to a file using dd(1),
following a process similar to:

 # dd if=/dev/rsd0a of=openbsd.pbr bs=512 count=1

Note: this is a really good time to remind you that blindly typing commands in you don't understand is a really bad idea. This line
will not work directly on most computers. It is left to the reader to adapt it to their machine.

Now boot NT and put openbsd.pbr in C:. Add a line like this to the end of C:\BOOT.INI:

 c:\openbsd.pbr="OpenBSD"

When you reboot, you should be able to select OpenBSD from the NT loader menu. There is much more information available
about NTLDR at the NTLDR Hacking Guide.

On Windows XP you can also edit the boot information using the GUI; see the XP Boot.ini HOWTO.

Programs that do much of this for you are available, for example, BootPart. This program can be run from Windows NT/2000/XP,
and will fetch the OpenBSD PBR, place it on your NT/2000/XP partition, and will add it to C:\BOOT.INI

Note: The Windows NT/2000/XP boot loader is only capable of booting OSs from the primary hard drive. You can not use it to
load OpenBSD from the second drive on a system.

http://www.openbsd.org/faq/faq4.html (25 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=dd&sektion=1
http://www.tburke.net/info/ntldr/ntldr_hacking_guide.htm
http://support.microsoft.com/default.aspx?scid=kb;en-us;289022
http://www.winimage.com/bootpart.htm

4 - OpenBSD 4.4 Installation Guide

Other boot loaders

Some other bootloaders OpenBSD users have used successfully include GAG, OS-BS, The Ranish Partition Manager and GRUB.

OpenBSD and Linux (i386)

Please refer to INSTALL.linux, which gives in depth instructions on getting OpenBSD working with Linux.

Time zone issues

OpenBSD expects the computer's real-time clock to be set to UTC (Universal Coordinated Time). Some other OSs expect the real-
time clock to be set to local time. Obviously, this can create a bit of a problem if you are using both OSs on the same computer.
One or the other is most likely going to have to be adapted. More info on doing this is in FAQ 8 - Why is my clock off by several
hours?

4.9 - Sending your dmesg to dmesg@openbsd.org after the install

Just to remind people, it's important for the OpenBSD developers to keep track of what hardware works, and what hardware
doesn't work perfectly.

A quote from /usr/src/etc/root/root.mail

If you wish to ensure that OpenBSD runs better on your machines, please do us
a favor (after you have your mail system configured!) and type something like:
 # dmesg | mail -s "Sony VAIO 505R laptop, apm works OK" dmesg@openbsd.org
so that we can see what kinds of configurations people are running. As shown,
including a bit of information about your machine in the subject or the body
can help us even further. We will use this information to improve device
driver
support in future releases. (Please do this using the supplied GENERIC
kernel,
not for a custom compiled kernel, unless you're unable to boot the GENERIC
kernel. If you have a multi-processor machine, dmesg results of both GENERIC.
MP
and GENERIC kernels are appreciated.) The device driver information we get
from
this helps us fix existing drivers. Thank you!

Make sure you send email from an account that is able to also receive email so developers can contact you if they have something
they want you to test or change in order to get your setup working. It's not important at all to send the email from the same
machine that is running OpenBSD, so if that machine is unable to receive email, just

$ dmesg | mail your-account@yourmail.dom

and then forward that message to

 dmesg@openbsd.org

where your-account@yourmail.dom is your regular email account.

http://www.openbsd.org/faq/faq4.html (26 of 32)4/29/2009 5:05:02 PM

http://gag.sourceforge.net/
http://www.ranish.com/part/
http://www.gnu.org/software/grub/
ftp://ftp.openbsd.org/pub/OpenBSD/4.4/i386/INSTALL.linux

4 - OpenBSD 4.4 Installation Guide

NOTES

● Please send only GENERIC kernel dmesgs. Custom kernels that have device drivers removed are not helpful.
● If you have a supported multiprocessor system and normally run the GENERIC.MP kernel, it is helpful to developers to

see the dmesg output of both the GENERIC kernel and the GENERIC.MP kernel, so please send both of them in separate
emails.

● The dmesgs are received on a computer using the spamd spam rejection system. This may cause your dmesg to not be
accepted by the mail servers for a period of time. Be patient, after half an hour to an hour or so, it will get through.

The method above is very easy, but if you have chosen not to configure mail on your OpenBSD system, you should still send your
dmesg to the developers. Save your dmesg output to a text file.

$ dmesg > ~/dmesg.txt

Then transfer this file (using FTP/scp/floppydisk/carrier-pigeon/...) to the system you normally use for email. Since the dmesg
output you send in is processed automatically, be sure to check the following when using alternate email clients/systems:

● Configure your email client to send messages as plain text; do not use HTML-formatted email.
● Turn off any forced line break feature. Many email clients are configured to insert line breaks at 72 columns (the norm for

mailing lists).
● Make sure your email client does not reformat messages into "text-flow" nonsense.
● Do not send the dmesg output as file attachment. Put the dmesg output into the body of the message.

4.10 - Adding a file set after install

"Oh no! I forgot to add a file set when I did the install!"

Sometimes, you realize you really DID need comp44.tgz (or any other system component) after all, but you didn't realize this
at the time you installed your system. Good news: There are two easy ways to add file sets after the initial install:

Using the upgrade process

Simply boot your install media (CD-ROM or Floppy), and choose Upgrade (rather than Install). When you get to the lists of file
sets to install, choose the sets you neglected to install first time around, select your source, and let it install them for you.

Using tar(1)

The install file sets are simply compressed tar files, and you can expand them manually from the root of the filesystem:

 # cd /
 # tar xzvphf comp44.tgz

Do NOT forget the 'p' option in the above command in order to restore the file permissions properly!

One common mistake is to think you can use pkg_add(1) to add missing file sets. This does not work. pkg_add(1) is the package
management tool to install third party software. It handles package files, not generic tar files like the install sets.

If you are installing the xbase file set on your system for the first time using tar(1) and without rebooting, the shared library
cache must be updated after the installation using ldconfig(8). To add all the X libraries to the cache:

http://www.openbsd.org/faq/faq4.html (27 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=spamd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=pkg_add&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ldconfig&sektion=8

4 - OpenBSD 4.4 Installation Guide

ldconfig -m /usr/X11R6/lib

Alternatively, you can just reboot your system, and this will be done automatically by the rc(8) startup script.

4.11 - What is 'bsd.rd'?

bsd.rd is a "RAM Disk" kernel. This file can be very useful; many developers are careful to keep it on the root of their system
at all times.

Calling it a "RAM Disk kernel" describes the root filesystem of the kernel -- rather than being a physical drive, the utilities
available after the boot of bsd.rd are stored in the kernel, and are run from a RAM-based filesystem. bsd.rd also includes a
healthy set of utilities to allow you to do system maintenance and installation.

On some platforms, bsd.rd is actually the preferred installation technique -- you place this kernel on an existing filesystem, boot
it, and run the install from it. On most platforms, if you have a running older version of OpenBSD, you can FTP a new version of
bsd.rd, reboot from it, and install a new version of OpenBSD without using any removable media at all.

Here is an example of booting bsd.rd on an i386 system:

 Using Drive: 0 Partition: 3
 reading boot.....
 probing: pc0 com0 com1 apm mem[639k 255M a20=on]
 disk: fd0 hd0+
 >> OpenBSD/i386 BOOT 3.02
 boot> boot hd0a:/bsd.rd
. . . normal boot to install . . .

As indicated, you will be brought to the install program, but you can also drop to the shell to do maintenance on your system.

The general rule on booting bsd.rd is to change your boot kernel from /bsd to bsd.rd through whatever means used on your
platform.

4.12 - Common installation problems

4.12.1 - My Compaq only recognizes 16M RAM

Some Compaq systems have an issue where the full system RAM is not detected by the OpenBSD second stage boot loader
properly, and only 16M may be detected and used by OpenBSD. This can be corrected either by creating/editing /etc/boot.
conf file, or by entering commands at the "boot>" prompt before OpenBSD loads. If you had a machine with 64M RAM, but
OpenBSD was only detecting the first 16M, the command you would use would be:

 machine mem +0x3000000@0x1000000

to add 48M (0x3000000) after the first 16M (0x1000000). Typically, if you had a machine with this problem, you would enter
the above command first at the install floppy/CD-ROM's boot> prompt, load the system, reboot, and create an /etc/boot.
conf file with the above line in it so all future bootings will recognize all available RAM.

It has also been reported that a ROM update will fix this on some systems.

http://www.openbsd.org/faq/faq4.html (28 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=rc&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=boot.conf&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=boot.conf&sektion=8&arch=i386

4 - OpenBSD 4.4 Installation Guide

4.12.2 - My i386 won't boot after install

Your install seemed to go fine, but on first boot, you see no sign of OpenBSD attempting to boot. There are a few common
reasons for this problem:

● No partition was flagged active in fdisk(8). To fix this, reboot the machine using the boot floppy or media, and "flag" a
partition as "active" (bootable). See here and here.

● No valid boot loader was ever put on the disk. If you answer "Y" to the "Use entire disk for OpenBSD?" question during
the install, or use the "reinit" option of fdisk(8), the OpenBSD boot record is installed on the Master Boot Record of the
disk; otherwise, the existing master boot code is untouched. This will be a problem if no other boot record existed. One
solution is to boot the install media again, drop to the shell and invoke fdisk(8) to update the MBR code from the command
line:

 # fdisk -u wd0

Note: the "update" option within the interactive ("-e") mode of fdisk will not write the signature bytes required to make the
disk bootable.

● In some rare occasions, something may go wrong with the second stage boot loader install. Reinstalling the second
stage boot loader is discussed here.

4.12.3 - My (older, slower) machine booted, but hung at the ssh-keygen steps

It is very likely your machine is running fine, just taking a while to do the ssh key generation process. A SPARCStation2 or a
Macintosh Quadra may take several hours to complete the three ssh-keygen(1) steps. Just let it finish; it is only done once per
install.

Note that the default key size was increased for OpenBSD 3.8, so the generation times are much longer than they used to be. Users
of very slow machines may wish to generate their keys on another computer, place them in a site44.tgz file, and install them with
the rest of the file sets.

4.12.4 - I got the message "Failed to change directory" when doing an install

When doing an FTP install of a snapshot during the -beta stage of the OpenBSD development cycle, you may see this:

 Display the list of known ftp servers? [no] yes
 Getting the list from 192.128.5.191 (ftp.openbsd.org)... FAILED
 Failed to change directory.
 Server IP address or hostname?

This is normal and expected behavior during this pre-release part of the cycle. The install program looks for the FTP list on the
primary FTP server in a directory that won't be available until the release date, so you get the above message.

Simply use the FTP mirror list to find your favorite FTP mirror, and manually enter its name when prompted.

Note: You should not see this if you are installing -release or from CD-ROM.

4.12.5 - My fdisk partition table is trashed or blank!

Occasionally, a user will find a system will work, but when doing an fdisk wd0, they see a completely blank (or sometimes,
garbage) partition table. This is usually caused by having created a partition in fdisk(8) which had an offset of zero sectors, rather

http://www.openbsd.org/faq/faq4.html (29 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=fdisk&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=fdisk&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh-keygen&sektion=1
http://www.openbsd.org/ftp.html
http://www.openbsd.org/cgi-bin/man.cgi?query=fdisk&sektion=8&arch=i386

4 - OpenBSD 4.4 Installation Guide

than the one track offset it should have (note: this is assuming the i386 or amd64 platform. Other platforms have different offset
requirements, some need NO offset). The system then boots using the PBR, not using the MBR.

While this configuration can work, it can be a maintenance problem and should be fixed. To fix this, the disk's file systems must
generally be recreated from scratch (though if you REALLY know what you are doing, you may be able to recreate just your
disklabel and MBR, and only lose and have to rebuild the first OpenBSD partition on the disk).

4.12.6 - I have no floppy or CD-ROM on my machine

Some computers people might want to run OpenBSD on lack any obvious way to install OpenBSD. Here are some tips and
techniques you can use to get OpenBSD installed on these systems.

● Network boot, using PXE (i386 or amd64) or diskless(8) (other platforms).
● External USB CD-ROM or USB floppy, if your machine can boot from one.
● USB Flash disk or hard disk, again if your computer can boot from a USB device. Prepare the device on another computer

as described in FAQ 14. Boot from it, but chose the bsd.rd kernel, then install as normal. You could also have the file sets
pre-loaded on the flash media, as well.

● Worst case, if none of the above is suitable, you can usually pull the disk out of the target system, use suitable adapters to
install it in a "normal" computer, install OpenBSD, then replace the disk back in the target system. OpenBSD will then
boot nicely in the target machine, though you will very possibly have to adjust the network configuration.

In all cases, remember that the machine had an OS installed on it before, and it was usually intended that the OS could be reloaded
in the field. How this was originally intended to be done will often provide you a good idea how you can install OpenBSD now.

4.13 - Customizing the install process

siteXX.tgz file

The OpenBSD install/upgrade scripts allow the selection of a user-created set called "siteXX.tgz", where XX is the release
version (e.g. 44). The siteXX.tgz file set is, like the other file sets, a gzip(1) compressed tar(1) archive rooted in '/' and is un-
tarred like the other sets with the options xzphf. This set will be installed last, after all other file sets.

This file set allows the user to add to and/or override the files installed in the 'normal' sets and thus customize the installation or
upgrade.

You can also create and use hostname-specific install sets, which are named siteXX-<hostname>.tgz, for example,
"site44-puffy.tgz". This allows easy per-host customized installations, upgrades, or disaster recovery.

Some example uses of a siteXX.tgz file:

● Create a siteXX.tgz file that contains all the file changes you made since first installing OpenBSD. Then, if you have to re-
create the system you simply select siteXX.tgz during the re-install and all of your changes are replicated on the new
system.

● Create a series of machine specific directories that each contain a siteXX.tgz file that contains files specific to those
machine types. Installation of machines (e.g. boxes with different graphics cards) of a particular category can be completed
by selecting the appropriate siteXX.tgz file.

● Put the files you routinely customize in a same or similar way in a siteXX.tgz file -- /etc/skel files, /etc/pf.
conf, /var/www/conf/httpd.conf, /etc/rc.conf.local, etc.

install.site/upgrade.site scripts

http://www.openbsd.org/faq/faq4.html (30 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/i386.html
http://www.openbsd.org/amd64.html
http://www.openbsd.org/cgi-bin/man.cgi?query=diskless&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=gzip&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=tar&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=adduser&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=httpd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=rc.conf.local&sektion=8

4 - OpenBSD 4.4 Installation Guide

As the last step in the install/upgrade process, the scripts look in the root directory of the newly installed/upgraded system for
install.site or upgrade.site, as appropriate to the current process, and runs this script in an environment chrooted to
the installed/upgraded system's root. Remember, the upgrade is done from a booted file system, so your target file system is
actually mounted on /mnt. However, because of the chroot, your script can be written as if it is running in the "normal" root of
your file system. Since this script is run after all the files are installed, you have almost full functionality of your system (though,
in single user mode) when your script runs.

Note that the install.site script would have to be in a siteXX.tgz file, while the upgrade.site script could be
put in the root directory before the upgrade, or could be put in a siteXX.tgz file.

The scripts can be used to do many things:

● Remove files that are installed/upgraded that you don't want present on the system.
● Remove/upgrade/install the packages you want on the installed system.
● Do an immediate backup/archive of the new system before you expose it to the rest of the world.
● Use rdate(8) to set the system time.

The combination of siteXX.tgz and install.site/upgrade.site files is intended to give users broad customization
capabilities without having to build their own custom install sets.

Note: if you will be doing your install from an http server, you will need to add your site*.tgz file(s) to the file index.txt
in the source directory in order for them to be listed as an option at install time. This is not needed for FTP or other installs.

4.14 - How can I install a number of similar systems?

Here are some tools you can use when you have to deploy a number of similar OpenBSD systems.

siteXX.tgz and install/upgrade.site files

See the above article.

Restore from dump(8)

On most platforms, the boot media includes the restore(8) program, which can be used to restore a backup made by dump(8).
Thus, you could boot from a floppy, CD, or bsd.rd file, then fdisk, disklabel, and restore the desired configuration from tape or
other media, and install the boot blocks. More details here.

Disk imaging

Unfortunately, there are no known disk imaging packages which are FFS-aware and can make an image containing only the active
file space. Most of the major disk imaging solutions will treat an OpenBSD partition as a "generic" partition, and can make an
image of the whole disk. This often accomplishes your goal, but usually with huge amounts of wasted space -- an empty, 10G /
home partition will require 10G of space in the image, even if there isn't a single file in it. While you can typically install a drive
image to a larger drive, you would not be able to directly use the extra space, and you would not be able to install an image to a
smaller drive.

If this is an acceptable situation, you may find the dd command will do what you need, allowing you to copy one disk to another,
sector-for-sector. This would provide the same functionality as commercial programs without the cost.

http://www.openbsd.org/faq/faq4.html (31 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=chroot&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=rdate&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=restore&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=dump&sektion=8
http://www.openbsd.org/orders.html
http://www.openbsd.org/cgi-bin/man.cgi?query=restore&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=dd&sektion=1

4 - OpenBSD 4.4 Installation Guide

4.15 - How can I get a dmesg(8) to report an install problem?

When reporting a problem, it is critical to include the complete system dmesg(8). However, often when you need to do this, it is
because the system is working improperly or won't install so you may not have disk, network, or other resources you need to get
the dmesg to the appropriate mail list. There are other ways, however:

● Floppy disk: The boot disks and CD-ROM have enough tools to let you record your dmesg to an MSDOS floppy disk for
reading on another machine. Place an MSDOS formatted floppy in your disk drive and execute the following commands:

 mount -t msdos /dev/fd0a /mnt
 dmesg >/mnt/dmesg.txt
 umount /mnt

If you have another OpenBSD system, you can also write it to an OpenBSD compatible floppy -- often, the boot floppy has
enough room on it to hold the dmesg. In that case, leave off the "-t msdos" above.

● Serial Console: Using a serial console and capturing the output on another computer is often the best way to capture
diagnostic information - particularly if the computer panics immediately after boot. As well as a second computer, you will
need a suitable serial cable (often a null-modem cable), and a terminal emulator program that can capture screen output to
file.

General information on setting up a serial console is provided elsewhere in the FAQ; in order to capture a log of the install,
the following commands are usually sufficient.

i386

At the boot loader prompt, enter

boot> set tty com0

This will tell OpenBSD to use the first serial port (often called COM1 or COMA in PC documentation) as a serial console.
The default baud rate is 9600.

Sparc/Sparc64

These machines will automatically use a serial console if started without a keyboard present. If you have a keyboard and
monitor attached, you can still force the system to use a serial console with the following invocation at the ok prompt.

ok setenv input-device ttya
ok setenv output-device ttya
ok reset

● FTP: Under some circumstances, and provided you first set up the network correctly, you may be able to use the ftp(1)
client on the boot disk or CD-ROM to send the dmesg to a local FTP server, where you can retrieve it later.

[FAQ Index] [To Section 3 - Getting started with OpenBSD] [To Section 5 - Building the System from Source]

 www@openbsd.org
$OpenBSD: faq4.html,v 1.278 2009/03/22 03:45:44 nick Exp $

http://www.openbsd.org/faq/faq4.html (32 of 32)4/29/2009 5:05:02 PM

http://www.openbsd.org/report.html
http://www.openbsd.org/cgi-bin/man.cgi?query=dmesg&sektion=8
http://www.openbsd.org/mail.html
http://www.openbsd.org/cgi-bin/man.cgi?query=ftp&sektion=1
mailto:www@openbsd.org

5 - Building the System from Source

[FAQ Index] [To Section 4 - Installation Guide] [To Section 6 - Networking]

5 - Building the System from Source

Table of Contents

● 5.1 - OpenBSD's Flavors
● 5.2 - Why should I build my system from source?
● 5.3 - Building OpenBSD from source

❍ 5.3.1 - Overview
❍ 5.3.2 - Install or upgrade to closest available binary
❍ 5.3.3 - Fetching the appropriate source code
❍ 5.3.4 - Building the kernel
❍ 5.3.5 - Building userland

● 5.4 - Building a release
● 5.5 - Building X
● 5.6 - Why do I need a custom kernel?
● 5.7 - Building a custom kernel
● 5.8 - Boot-time configuration
● 5.9 - Using config(8) to change your kernel
● 5.10 - Getting more verbose output during boot
● 5.11 - Common problems, tips and questions when compiling and building

❍ 5.11.1 - The build stopped with a "Signal 11" error
❍ 5.11.2 - "make build" fails with "cannot open output file snake: is a directory"
❍ 5.11.3 - My IPv6-less system doesn't work!
❍ 5.11.4 - Oops! I forgot to make the /usr/obj directory first!
❍ 5.11.5 - Put /usr/obj on its own partition
❍ 5.11.6 - How do I not build parts of the tree?
❍ 5.11.7 - Where can I learn more about the build process?
❍ 5.11.8 - I didn't see any snapshots on the FTP site. Where did they go?
❍ 5.11.9 - How do I bootstrap a newer version of the compiler (gcc)?
❍ 5.11.10 - What is the best way to update /etc, /var, and /dev?
❍ 5.11.11 - Is there an easy way to make all the file hierarchy changes?

http://www.openbsd.org/faq/faq5.html (1 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/index.html

5 - Building the System from Source

❍ 5.11.12 - Can I cross-compile? Why not?

5.1 - OpenBSD's Flavors

There are three "flavors" of OpenBSD:

● -release: The version of OpenBSD shipped every six months on CD.
● -stable: Release, plus patches considered critical to security and reliability.
● -current: Where new development work is presently being done, and eventually, it will turn into

the next release.

Graphically, the development of these flavors looks something like this:

 ,------o-----------o----X 4.1
Stable
 | . .
 | . ,------o---------o----X 4.2
Stable
 | . | . .
 | . | . ,----o----------o--> 4.3
Stable
 | . | . | . .
 | . | . | . ,-----o--> 4.4
Stable
 | . | . | . | .
 | . | . | . | .
 -->4.1Rel----->4.2Rel----->4.3Rel----->4.4Rel----> Current

 Time --->

-Current is where active development work is done, and eventually, it will turn into the next -release of
OpenBSD. Every six months, when a new version of OpenBSD is released, -current is tagged, and
becomes -release: a frozen point in the history of the source tree. Each -release is never changed; it is
what is on the CDs and FTP servers.

-Stable is based on -release, and is a branch from the main development path of OpenBSD. When very
important fixes are made to -current, they are "back ported" (merged) into the -stable branches; because
of this, -stable is also known as the "patch branch." In the above illustration, the vertical dotted lines
denote bug fixes being incorporated into the -stable branches. You will also note that in the above

http://www.openbsd.org/faq/faq5.html (2 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/orders.html
http://www.openbsd.org/ftp.html

5 - Building the System from Source

example, the 4.1-stable branch came to an end with 4.3-release, and the 4.2-stable branch came to an
end with 4.4-release -- old releases are typically supported up to two releases back. It takes resources
and time to support older versions, while we might like to provide ongoing support for old releases, we
would rather focus on new features. The -stable branch is, by design, very easy to build from -release of
the same version (i.e., going from 4.4-release to 4.4-stable).

The -stable branch is -release plus patches found on the errata page. The operation of -stable is the same
as the -release it is based on. If the man pages have to change, it probably won't go into -stable. In other
words, new device support and new features will NOT be added to -stable.

It is worth pointing out that the name "-stable" is not intended to imply that -current is unreliable.
Rather, -current is changing and evolving, whereas the operation and APIs of -stable are not going to
change, so you shouldn't have to relearn your system or change any configuration files, or have any
problem adding additional applications to your system.

In fact, as our hope is to continually improve OpenBSD, the goal is that -current should be more
reliable, more secure, and of course, have greater features than -stable. Put bluntly, the "best" version of
OpenBSD is -current.

Warning: -current is a moving target. It changes minute by minute, and may well change several times
in the time it takes to retrieve the source code. While the developers work hard to ensure that the system
always compiles and that there are no major bugs, it is entirely possible to get the -current source and
have it fail to compile, whereas five minutes later everything will be just fine. There are also flag days
and major system changes that the developers navigate with one-time tools, which mean that source-
based updating is not possible. If you are not prepared to deal with this, stay away from -current.

Most users should be running either -stable or -release. That being said, many people do run -current on
production systems, and it is important that some people do so to identify bugs and test new features.
However, if you don't know how to properly describe, diagnose and deal with a problem, don't tell
yourself (or anyone else) that you are "helping the project" by running -current. "It didn't work!" is not a
useful bug report. "The recent changes to the pciide driver broke compatibility with my Slugchip-based
IDE interface, dmesg of working and broken systems follow..." might be a useful report.

There are times when "normal" users may wish to live on the cutting edge and run -current. The most
common reason is that the user has a device which is not supported by -release (and thus, not -stable), or
wishes to use a new feature of the -current. In this case, the choice may be either -current or not using
the device, and -current may be the lesser evil. However, one should not expect hand-holding from the
developers.

Snapshots

http://www.openbsd.org/faq/faq5.html (3 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/errata.html
http://www.openbsd.org/cgi-bin/man.cgi
http://www.openbsd.org/report.html#bugtypes

5 - Building the System from Source

Between formal releases of OpenBSD, snapshots are made available through the FTP sites. As the name
implies, these are builds of whatever code is in the tree at the instant the builder grabbed a copy of the
code for that particular platform. Remember, on some platforms, it may be DAYS before the snapshot
build is completed and put out for distribution. There is no promise that the snapshots are completely
functional, or even install. Often, a change that needs to be tested may trigger snapshot creation. Some
platforms have snapshots built on an almost daily basis, others will be much less frequent. If you desire
to run -current, a recent snapshot is often all you need, and upgrading to a snapshot is a required starting
point before attempting to build -current from source.

It is sometimes asked if there is any way to get a copy of exactly the code used to build a snapshot. The
answer is no. First, there is no significant benefit to this. Second, the snapshots are built as desired, as
time permits, and as resources become available. On fast platforms, several snapshots may be released in
one day. On slower platforms, it may take a week or more to build a snapshot. Providing tags or markers
in the source tree for each snapshot would be quite impractical. Third, snapshots often contain
experimental code that isn't yet committed to the tree.

Upgrade vs. Update

You will often see references to "upgrading" and "updating" OpenBSD installs. Even though these
words have similar meanings, they are used slightly differently in OpenBSD.

Upgrading is the process of installing a newer version of OpenBSD, with new functionality. For
example, going from v4.3 to v4.4, or going from the June 12th snapshot to the June 20th snapshot. When
upgrading, you will typically have to consult either Following -current or the Upgrade guide (when
changing releases) to make the changes required to run the upgraded version of OpenBSD.
Updating is the process of applying patches to a system to improve the operation WITHOUT changing
the basic functionality or binary compatibility. This is typically done by following the source patching
process or by following the stable process. When you "update" your system, it goes from a -release to a -
stable (or patched -release) of the same release version, for example, 4.4-release to 4.4-stable. You may
then later update it to a newer -stable of the same release version. The update process is typically very
painless, as no /etc files or other system configurations need to be changed.

So, you may install a system (for example, 4.3-release) from CD, then update it to 4.3-stable a few
times, then upgrade it to 4.4-release from CD, and update that a few times before upgrading it again to
the next release.

Keeping Things in Sync

It is important to understand that OpenBSD is an Operating System, intended to be taken as a whole, not
a kernel with a bunch of utilities stuck on. You must make sure your kernel, "userland" (the supporting
utilities and files) and ports tree are all in sync, or unpleasant things will happen. Said another way

http://www.openbsd.org/faq/faq5.html (4 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/ftp.html
http://www.openbsd.org/faq/current.html
http://www.openbsd.org/faq/upgrade44.html
http://www.openbsd.org/stable.html

5 - Building the System from Source

(because people just keep making the error), you can not run brand new ports on a month old system,
or rebuild a kernel from -current source and expect it to work with a -release userland. Yes, this does
mean you need to upgrade your system if you want to run a new program which was added to the ports
tree today. Sorry, but again, OpenBSD has limited resources available.

One should also understand that the upgrade process is supported in only one direction: from older to
newer, and from -stable to -current. You can not run 4.4-current (or a snapshot), then decide you are
living too dangerously, and step back to 4.4-stable. You are on your own if you choose any path other
than the supported option of reloading your system from scratch, do not expect assistance from the
OpenBSD development team.

Yes, this does mean you should think long and hard before committing yourself to using -current.

5.2 - Why do I need to compile the system from source?

Actually, you very possibly do not.

Some reasons why NOT to build from source:

● Compiling your own system as a way of upgrading it is not supported.
● You will NOT get better system performance by compiling your own system.
● Changing compiler options is more likely to break your system than to improve it.

Some reasons why you might actually wish or need to build from source:

● Test or develop new features.
● Compiling the system puts a lot of stress on the computer, it can be a way to make sure the

system you just put together or acquired is actually in pretty good operational condition.
● You wish to follow the stable branch.
● You wish to make a highly customized version of OpenBSD for some special application.

The OpenBSD team puts out new snapshots based on -current code on a very regular basis for all
platforms. It is likely this will be all you need for running -current.

The most common reason to build from source is to follow the -stable branch, where building from
source is the only supported option.

5.3 - Building OpenBSD from source

5.3.1 - Overview of the building process

http://www.openbsd.org/faq/faq5.html (5 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/stable.html

5 - Building the System from Source

Building OpenBSD from source involves a number of steps:

● Upgrading to the closest available binary.
● Fetching the appropriate source code.
● Building the new kernel and booting from it.
● Building "userland" ("make build").

There are a couple additional steps that some users may wish to perform, depending on the purpose of
the build and if X is installed:

● Building a "release".
● Building X.

5.3.2 - Install or Upgrade to closest available binary

The first step in building from source is to make sure you have the closest available binary installed. Use
this table to look at where you are, where you wish to go, and what binary you should start with:

You are at Goal Binary upgrade to then ...

Old -
release

New
release

Newest release Done!

-release -stable Newest release Fetch & build -stable

Old -stable -stable Newest release Fetch & build -stable

-release -current Latest Snapshot
(optional) Fetch & build -
current

Old -
current

-current Latest Snapshot
(optional) Fetch & build -
current

It is recommended that you install the binary by using the "Upgrade" option of the install media. If that
is not possible, you can also unpack the binaries as described here. Regardless, you must do the entire
upgrade process, including creating any users or other /etc directory changes needed.

5.3.3 - Fetching the appropriate source code

OpenBSD source is managed using the CVS version control system, and cvs(1) is used to pull a copy of
the desired source to your local machine for compilation. This can be done by using an AnonCVS server
(a machine holding a publicly accessible copy of the entire CVS repository used by the OpenBSD
project) or from a local CVS repository you maintain using the CVSup, or CVSync programs available

http://www.openbsd.org/faq/faq5.html (6 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/faq/upgrade44.html
http://ximbiot.com/cvs/cvshome/
http://www.openbsd.org/cgi-bin/man.cgi?query=cvs&sektion=1
http://www.openbsd.org/anoncvs.html
http://www.openbsd.org/cvsup.html
http://www.openbsd.org/cvsync.html

5 - Building the System from Source

as packages. CVSup can also be used in a "checkout" mode, but that will not be covered here. If you
have multiple machines you wish to maintain source code trees on, you may find it worth having a local
CVS repository, created and maintained using CVSup or CVSync.

After deciding which AnonCVS server you wish to use, you must "checkout" the source tree, after that,
you then maintain the tree by running "updates", to pull updated files to your local tree.

The CVS(1) command has many options, some of them are required to checkout and update a useful
tree. Other commands can cause a broken tree. Following and understanding directions here is
important.

Following -current

In this case, we will assume we are using a public AnonCVS server, anoncvs@anoncvs.
example.org:/cvs. We will also assume you are using sh(1) as your command shell, if you
are using a different shell, you will have to adjust some of these commands.

To checkout a -current CVS src tree, you can use the following:

 # cd /usr
 # export CVSROOT=anoncvs@anoncvs.example.org:/cvs
 # cvs -d$CVSROOT checkout -P src

Once you have a tree, you can update it at a later time:

 # cd /usr/src
 # export CVSROOT=anoncvs@anoncvs.example.org:/cvs
 # cvs -d$CVSROOT up -Pd

Following -Stable

If you wish to check out an alternative "branch" of the tree, such as the -stable branch, you
will use the "-r" modifier to your checkout:

 # cd /usr
 # export CVSROOT=anoncvs@anoncvs.example.org:/cvs
 # cvs -d$CVSROOT checkout -rOPENBSD_4_4 -P src

This will pull the src files from the OPENBSD_4_4 branch, which is also known as the
"Patch branch" or "-stable". You would update the code similarly:

http://www.openbsd.org/faq/faq5.html (7 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/anoncvs.html
http://www.openbsd.org/cgi-bin/man.cgi?query=cvs&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=sh&sektion=1
http://www.openbsd.org/stable.html

5 - Building the System from Source

 # cd /usr/src
 # export CVSROOT=anoncvs@anoncvs.example.org:/cvs
 # cvs -d$CVSROOT up -rOPENBSD_4_4 -Pd

Actually, CVS is nice enough to stick a "Tag" in the checked out file system, so you don't
have to remember the "-rOPENBSD_4_4" part of the command line, it will remember
this until you explicitly clear them or set a new tag by using the "-A" option to
"update". However, it is probably better to provide too much info in your CVS
command lines than too little.

While only the "src" tree has been shown so far, you will do the same steps for "xenocara" and
"ports". As all parts of OpenBSD must be kept in sync, all trees you use should be checked out and
updated at the same time. You can combine the checkouts into one line (-stable shown):

 # export CVSROOT=anoncvs@anoncvs.example.org:/cvs
 # cd /usr
 # cvs -d$CVSROOT checkout -rOPENBSD_4_4 -P src ports xenocara

However, updates must be done directory-by-directory.

At this point, whether you followed -stable or -current you should have a usable source tree. Be very
careful which tree you grab -- it is easy to try to compile -current when aiming for -stable.

Pre-loading the tree: src.tar.gz, sys.tar.gz

While you can download the entire source tree from an AnonCVS server, you can often save a lot of
time and bandwidth by "pre-loading" your source tree with the source files from either the OpenBSD
CD or from an FTP server. This is particularly true if you are running -stable, as relatively few files
change between this version and the -release it is based on.

To extract the source tree from the CD to /usr/src (assuming the CD is mounted on /mnt):

 # cd /usr/src; tar xzf /mnt/src.tar.gz
 # cd /usr; tar xzf /mnt/xenocara.tar.gz
 # cd /usr; tar xzf /mnt/ports.tar.gz

The source files available for download from the FTP servers are separated into two files to minimize
the download time for those wishing to work with only one part of the tree. The two files are sys.tar.
gz, which contains the files used to create the kernel, and src.tar.gz which contains all the other
"userland" utilities except the ports tree and the X11 sources. In general, however, you will usually want
both of them installed. Assuming the downloaded files, src.tar.gz and sys.tar.gz, are in /usr:

http://www.openbsd.org/faq/faq5.html (8 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/stable.html

5 - Building the System from Source

 # cd /usr/src
 # tar xzf ../sys.tar.gz
 # tar xzf ../src.tar.gz
 # cd /usr
 # tar xzf xenocara.tar.gz
 # tar xzf ports.tar.gz

Not all people will wish to unpack all the file sets, but as the system must be kept in sync, you will
generally need to set up all parts of the tree.

Common CVS tips

As indicated earlier, some options are mandatory to get a valid src tree in OpenBSD. The "-P" option
above is one of those: It "prunes" (removes) directories that are empty. Over the years, directories have
been created and deleted in the OpenBSD source tree, and sometimes the names of old directories are
currently used as file names. Without the "-P" option, your newly checked-out tree WILL NOT
successfully compile.

Much the same with the -d option on the 'update' command -- it creates new directories that may have
been added to the tree since your initial checkout. To get a successful update, you must use the -Pd
options.

Experienced CVS users may wonder why the CVSROOT was specified and used in this example, as cvs
(1) will record the CVS server's location in the checked out tree. This is correct, however there are
enough times where one may need to override the default anoncvs server, many people recommend
always specifying the repository explicitly. It is also worth noting that while the CVSROOT
environment variable can be used directly by cvs(1), it is used only if nothing else overrides it (i.e., cvs
(1) would have an error without it), whereas specifying it in the cvs(1) command line overrides all other
values.

It is often useful to use a .cvsrc in your home directory to specify defaults for some of these options.
An example .cvsrc file:

 $ more ~/.cvsrc
 cvs -q -danoncvs@anoncvs.example.org:/cvs
 diff -up
 update -Pd
 checkout -P

This file would cause cvs(1) to use the anoncvs@anoncvs.example.org:/cvs server, suppress
usually unneeded output ("-q" is "quiet") for all operations, a "cvs up" command defaults to using the -
Pd, a "cvs diff" defaults to providing "unified diffs" due to the "-u", and a "cvs checkout" will use the "-

http://www.openbsd.org/faq/faq5.html (9 of 28)4/29/2009 5:05:05 PM

5 - Building the System from Source

P" option. While this is convenient, if you forget this file exists, or try to run commands you got used to
on a machine without this file, you will have problems.

As the source trees consist of large numbers of mostly small files, turning on soft updates for the
partition the source tree is on will often give significantly better performance.

5.3.4 - Building the kernel

We will assume you wish to build a standard (GENERIC or GENERIC.MP) kernel here. Normally, this
is what you want to do. Do not consider building a custom kernel if you have not mastered the standard
building process.

Obviously, the kernel is a VERY hardware dependent portion of the system. The source for the kernel is
in the /usr/src/sys directory. Some parts of the OpenBSD kernel code are used on all platforms,
others are very specific to one processor or one architecture. If you look in the /usr/src/sys/
arch/ directory, you may see some things that look a little confusing -- for example, there are
mac68k, m68k and mvme68k directories. In this case, the mvme68k and mac68k systems both use the
same processor, but the machines they are based on are very different, and thus require a very different
kernel (there is much more to a computer's design than its processor!). However, parts of the kernel are
common, those parts are kept in the m68k directory. If you are simply building a kernel, the base
architecture directories like m68k are not anything for you to worry about, you will be working
exclusively with the "compound architecture" directories, such as mvme68k.

Kernels are built based on kernel configuration files, which are located in the /usr/src/sys/arch/
<your platform>/conf directory. Building the kernel consists of using the config(8) program to
create and populate a kernel compile directory, which will end up in /usr/src/sys/arch/<your
platform>/compile/<KernelName>. For this example, we will assume you are using the i386
platform:

cd /usr/src/sys/arch/i386/conf
config GENERIC
cd ../compile/GENERIC
make clean && make depend && make
 [...lots of output...]
make install

Replace "i386" in the first line with your platform name. The machine(1) command can tell you what
your platform name is, so an obvious generalization would be to use the command "cd /usr/src/
sys/arch/`machine`/conf" instead on the first line.

At this point, reboot your machine to activate this new kernel. Note that the new kernel should be

http://www.openbsd.org/faq/faq5.html (10 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=config&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=machine&sektion=1

5 - Building the System from Source

running before the next step, though if you have followed the above advice about upgrading to the most
recent available snapshot, it may not matter as much. Sometimes, however, APIs change, and the old
kernel will be unable to run new applications, but the new kernel will generally support the old ones.

Variation on above process: Read-only source tree

Sometimes, you may wish to ensure your /usr/src/sys directory remains untouched. This can be
done by using the following process:

$ cd /somewhere
$ cp /usr/src/sys/arch/i386/conf/GENERIC .
$ config -s /usr/src/sys -b . GENERIC
$ make clean && make depend && make
 ... lots of output ...

Note that you can build a kernel without root access, but you must have root to install the kernel.

5.3.5 - Building the userland

There is a specific process used by OpenBSD. Processes used on other OSs you may have been familiar
with will most likely not work on OpenBSD, and will get you laughed at when you ask why.

● Clear your /usr/obj directory and rebuild symbolic links:

rm -rf /usr/obj/*
cd /usr/src
make obj

Note that the use of the /usr/objdirectory is mandatory. Failing to do this step before building
the rest of the tree will likely leave your srctree in bad shape.

● Make sure all the appropriate directories are created.

cd /usr/src/etc && env DESTDIR=/ make distrib-dirs

● Build the system:

cd /usr/src
make build

This compiles and installs all the "userland" utilities in the appropriate order. This is a fairly time

http://www.openbsd.org/faq/faq5.html (11 of 28)4/29/2009 5:05:05 PM

5 - Building the System from Source

consuming step -- a very fast machine may be able to complete it in well under an hour, a very
slow machine may take many days. When this step is complete, you have newly compiled
binaries in place on your system.

● If building -current: Update /dev and /etc, with the changes listed in current.html. If
following -stable after a proper upgrade process or a install of the proper starting binary, this step
is not needed or desired.

5.4 - Building a Release

What is a "release", and why would I want to make one?

A release is the complete set of files that can be used to install OpenBSD on another computer. If you
have only one computer running OpenBSD, you really don't have any reason to make a release, as the
above build process will do everything you need. An example use of the release process would be to
build -stable on a fast machine, then make a release to be installed on all your other machines in your
office.

The release process uses the binaries created in the /usr/obj directory in the building process above,
so you must successfully complete the build first, and nothing must disturb the /usr/obj directory. A
time where this might be a problem is if you use a memory disk as your /usr/obj for a little extra
performance in the build process, you would not want to reboot the computer between the "build" and
"release" steps!

The release process requires two work directories, which we will call DESTDIR and RELEASEDIR. All
the files that are part of a "clean" OpenBSD install will be copied to their proper place within the
DESTDIR. They will then be tar(1)ed up and placed in the RELEASEDIR. At the end of the process,
RELEASEDIR will hold the completed OpenBSD release. The release process will also use the /mnt
location, so this should not be used by anything while the release process is running. For the purpose of
example, we will use the DESTDIR of /usr/dest and the RELEASEDIR of /usr/rel.

The release process involves a couple utilities which are not in the base OpenBSD system, crunch and
crunchgen(1), which are used to create a single executable file made up of many individual binaries. The
name this single executable file is invoked by determines which component binary is run. This is how a
number of individual program files are squeezed into the ramdisk kernel that exists on boot floppies and
other boot media. These utilities must be built before the release process is started. They only need to be
built and installed once, but as people often forget this step, and these programs build quickly, some
people opt to just build crunch and crunchgen every time as part of the script they use to make a release.

NOTE: For -current and upcoming 4.5, crunch and crunchgen are part of the base system, skip the
separate build step below.

http://www.openbsd.org/faq/faq5.html (12 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/faq/current.html
http://www.openbsd.org/faq/upgrade44.html
http://www.openbsd.org/cgi-bin/man.cgi?query=mount_mfs&sektion=8

5 - Building the System from Source

You must have root privileges to make a release.

Doing a release

First, if it has not been done on this machine, build crunch and crunchgen:

cd /usr/src/distrib/crunch && make obj depend all install

Now, we define our DESTDIR and RELEASEDIR environment variables:

export DESTDIR=/usr/dest
export RELEASEDIR=/usr/rel

We now clear the DESTDIR and create the directories if needed:

test -d ${DESTDIR} && mv ${DESTDIR} ${DESTDIR}.old && rm -
rf ${DESTDIR}.old &
mkdir -p ${DESTDIR} ${RELEASEDIR}

RELEASEDIR does not normally need to be empty before starting the release process, however, if there
are changes in the release files or their names, old files may be left laying around. You may wish to also
erase this directory before starting.

We now make the release itself:

cd /usr/src/etc
make release

After the release is made, it is a good idea to check the release to make sure the tar files are matching
what is in the DESTDIR. The output of this step should be very minimal.

cd /usr/src/distrib/sets
sh checkflist

You now have complete and checked release file sets in the RELEASEDIR. These files can now be used
to install or upgrade OpenBSD on other machines.

The authoritative instructions on making a release are in release(8).

Note: if you wish to distribute the resultant files by HTTP for use by the upgrade or install scripts, you

http://www.openbsd.org/faq/faq5.html (13 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=release&sektion=8

5 - Building the System from Source

will need to add an "index.txt" file, which contains the list of all the files in your newly created release.

/bin/ls -1 >index.txt

Once you have the complete release made, you can use those files for a standard install or upgrade on
another machine, or if updating a machine to a new -stable, simply unpack the tar files in the root
directory of the target machine.

5.5 - Building X (Xenocara)

Starting with X.org v7, X switched to "modular build" system, splitting the x.org source tree into more
than three hundred more-or-less independent packages.

To simplify life for OpenBSD users, a "meta-build" called Xenocara was developed. This system
"converts" X back into one big tree to be built in one process. As an added bonus, this build process is
much more similar to the build process used by the rest of OpenBSD than the previous versions were.

The official instructions for building X exist in your machine's /usr/xenocara/README file and in
release(8).

Getting source code

The "usual" location for the xenocara source tree is /usr/xenocara, and the source is stored in the
xenocara module in CVS. So, the checkout process is this:

$ cd /usr
$ cvs -qdanoncvs@anoncvs.example.org:/cvs checkout -P
xenocara

Building Xenocara

For building the standard xenocara tree as supported by OpenBSD, no external tools are needed.

cd /usr/xenocara
rm -rf /usr/xobj/*
make bootstrap
make obj
make build

If you wish to make actual modifications to the source code, you will probably need to add several

http://www.openbsd.org/faq/faq5.html (14 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/faq/upgrade44.html
http://x.org/
http://xenocara.org/
http://www.openbsd.org/cgi-bin/man.cgi?query=release&sektion=8

5 - Building the System from Source

packages. Details are in the /usr/xenocara/README file.

Making a release

This is similar to the main system release process. After successfully building X, you will define a
DESTDIR and RELEASEDIR, with the same purposes as above. The RELEASEDIR can be the same
directory as the main system RELEASEDIR, but DESTDIR will be erased and rebuilt in this process. If
done carefully, this is not a problem, but using a separate DESTDIR may be "safer".

For this example, we will use a DESTDIR and RELEASEDIR of /usr/dest and /usr/rel, respectively.
This must be done after the above build process.

export DESTDIR=/usr/dest
export RELEASEDIR=/usr/rel
test -d ${DESTDIR} && mv ${DESTDIR} ${DESTDIR}- && \
 rm -rf ${DESTDIR}- &
mkdir -p ${DESTDIR} ${RELEASEDIR}
make release

When this process is completed, you will have a set of release files in the $RELEASEDIR.

5.6 - Why do I need a custom kernel?

Actually, you probably don't.

A custom kernel is a kernel built with a configuration file other than the provided GENERIC
configuration file. A custom kernel can be based on -release, -stable or -current code, just as a
GENERIC kernel can be. While compiling your own GENERIC kernel is supported by the OpenBSD
team, compiling your own custom kernel is not.

The standard OpenBSD kernel configuration (GENERIC) is designed to be suitable for most people.
More people have broken their system by trying to tweak their kernel than have improved system
operation. There are some people that believe that you must customize your kernel and system for
optimum performance, but this is not true for OpenBSD. Only the most advanced and knowledgeable
users with the most demanding applications need to worry about a customized kernel or system.

Some reasons you might want or need to build a custom kernel:

● You really know what you are doing, and want to shoe-horn OpenBSD onto a computer with a
small amount of RAM by removing device drivers you don't need.

● You really know what you are doing, and wish to remove default options or add options which

http://www.openbsd.org/faq/faq5.html (15 of 28)4/29/2009 5:05:05 PM

5 - Building the System from Source

may not have been enabled by default (and have good reason to do so).
● You really know what you are doing, and wish to enable experimental options.
● You really know what you are doing, and have a special need that is not met by GENERIC, and

aren't going to ask why it doesn't work if something goes wrong.

Some reasons why you should not build a custom kernel:

● You do not need to, normally.
● You will not get a faster system.
● You are likely to make a less reliable machine.
● You will not get any support from developers.
● You will be expected to reproduce any problem with a GENERIC kernel before developers take

any problem report seriously.
● Users and developers will laugh at you when you break your system.
● Custom compiler options usually do a better job of exposing compiler problems than improving

system performance.

Removing device drivers may speed the boot process on your system, but can complicate recovery
should you have a hardware problem, and is very often done wrong. Removing device drivers will not
make your system run faster by any noticeable amount, though can produce a smaller kernel. Removing
debugging and error checking can result in a measurable performance gain, but will make it impossible
to troubleshoot a system if something goes wrong.

Again, developers will usually ignore bug reports dealing with custom kernels, unless the problem can
be reproduced in a GENERIC kernel as well. You have been warned.

5.7 - Building a custom kernel

It is assumed you have read the above, and really enjoy pain. It is also assumed that you have a goal that
can not be achieved by either a Boot time configuration (UKC>) or by config(8)ing a GENERIC kernel.
If both of these are not true, you should stick to using GENERIC. Really.

OpenBSD kernel generation is controlled by configuration files, which are located in the /usr/src/
sys/arch/<arch>/conf/ directory by default. All architectures have a file, GENERIC, which is
used to generate the standard OpenBSD kernel for that platform. There may also be other configuration
files which are used to create kernels with different focuses, for example, for minimal RAM, diskless
workstations, etc.

The configuration file is processed by config(8), which creates and populates a compilation directory
in ../compile, on a typical installation, that would be in /usr/src/sys/arch/<arch>/
compile/. config(8) also creates a Makefile, and other files required to successfully build the kernel.

http://www.openbsd.org/faq/faq5.html (16 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=config&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=make&sektion=1

5 - Building the System from Source

Kernel Configuration Options are options that you add to your kernel configuration that place certain
features into your kernel. This allows you to have exactly the support you want, without having support
for unneeded devices. There are a multitude of options that allow you to customize your kernel. Here we
will go over only some of them, those that are most commonly used. Check the options(4) man page for
a complete list of options, and as these change from time to time, you should make sure you use a man
page for the same version of OpenBSD you are building. You can also check the example configuration
files that are available for your architecture.

Do not add, remove, or change options in your kernel unless you actually have a reason to do so!
Do not edit the GENERIC configuration file!! The only kernel configuration which is supported by the
OpenBSD team is the GENERIC kernel, the combination of the options in /usr/src/sys/arch/
<arch>/conf/GENERIC and /usr/src/sys/conf/GENERIC as shipped by the OpenBSD team
(i.e., NOT edited). Reporting a problem on a customized kernel will almost always result in you being
told to try to reproduce the problem with a GENERIC kernel. Not all options are compatible with each
other, and many options are required for the system to work. There is no guarantee that just because you
manage to get a custom kernel compiled that it will actually run. There is no guarantee that a kernel that
can be "config(8)ed" can be built.

You can see the platform-specific configuration files here:

● alpha Kernel Configuration Files
● i386 Kernel Configuration Files
● macppc Kernel Configuration Files
● sparc Kernel Configuration Files
● sparc64 Kernel Configuration Files
● vax Kernel Configuration Files
● hppa Kernel Configuration Files
● Other Arch's

Look closely at these files and you will notice a line near the top similar to:

 include "../../../conf/GENERIC"

This means that it is referencing another configuration file, one that stores platform-independent options.
When creating your kernel configuration, be sure to look through sys/conf/GENERIC.

Kernel configuration options should be placed in your kernel configuration file in the format of:

option name

http://www.openbsd.org/faq/faq5.html (17 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=options&sektion=4
http://www.openbsd.org/cgi-bin/cvsweb/src/sys/arch/alpha/conf/
http://www.openbsd.org/cgi-bin/cvsweb/src/sys/arch/i386/conf/
http://www.openbsd.org/cgi-bin/cvsweb/src/sys/arch/macppc/conf/
http://www.openbsd.org/cgi-bin/cvsweb/src/sys/arch/sparc/conf/
http://www.openbsd.org/cgi-bin/cvsweb/src/sys/arch/sparc64/conf/
http://www.openbsd.org/cgi-bin/cvsweb/src/sys/arch/vax/conf/
http://www.openbsd.org/cgi-bin/cvsweb/src/sys/arch/hppa/conf/
http://www.openbsd.org/cgi-bin/cvsweb/src/sys/arch/
http://www.openbsd.org/cgi-bin/cvsweb/src/sys/conf/GENERIC

5 - Building the System from Source

or

option name=value

For example, to place option "DEBUG" in the kernel, add a line like this:

option DEBUG

Options in the OpenBSD kernel are translated into compiler preprocessor options, therefore an option
like DEBUG would have the source compiled with option -DDEBUG, which is equivalent to doing a
#define DEBUG throughout the kernel.

Sometimes, you may wish to disable an option that is already defined, typically in the "src/sys/
conf/GENERIC" file. While you could modify a copy of that file, a better choice would be to use the
rmoption statement. For example, if you really wanted to disable the in-kernel debugger (not
recommended!), you would add a line such as:

 rmoption DDB

in your kernel configuration file. option DDB is defined in src/sys/conf/GENERIC, but the
above rmoption line deactivates it.

Once again, please see options(4) for more information about the specifics of these options. Also note
that many of the options also have their own manual pages -- always read everything available about an
option before adding or removing it from your kernel.

Building a custom kernel

In this case, we will build a kernel that supports the boca(4) ISA multi-port serial card. This card is not
in the GENERIC kernel, due to conflicts with other drivers. Another common reason to make a custom
kernel would be to use RAIDframe, which is too large to have in the stock kernel. There are two
common ways to make a custom kernel: copy the GENERIC config file to another name and edit it, or
create a "wrapper" file that "includes" the standard GENERIC kernel and any options you need that
aren't in GENERIC. In this case, our wrapper file looks like this:

include "arch/i386/conf/GENERIC"

boca0 at isa? port 0x100 irq 10 # BOCA 8-port
serial cards
com* at boca? slave ?

http://www.openbsd.org/faq/faq5.html (18 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=options&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=boca&sektion=4

5 - Building the System from Source

The two lines regarding the boca(4) card are copied from the commented out lines in GENERIC, with
the IRQ adjusted as needed. The advantage to using this "wrapper" file is any unrelated changes in
GENERIC are updated automatically with any other source code update. The disadvantage is one can
not remove devices (though in general, that's a bad idea, anyway).

Another way to generate a custom kernel is to make a copy of the standard GENERIC, giving it another
name, then editing it as needed. The disadvantage to this is later updates to the GENERIC configuration
file have to be merged into your copy, or you have to remake your configuration file.

In either event, after making your custom kernel configuration file, use config(8) and make the kernel as
documented above.

Full instructions for creating your own custom kernel are in the config(8) man page.

5.8 - Boot-Time Configuration

Sometimes when booting your system you might notice that the kernel finds your device but maybe at
the wrong IRQ. And maybe you need to use this device right away. Well, without rebuilding the kernel
you can use OpenBSD's boot time kernel configuration. This will only correct your problem for one
time. If you reboot, you will have to repeat this procedure. So, this is only meant as a temporary fix, and
you should correct the problem using config(8). Your kernel does however need option
BOOT_CONFIG in the kernel, which GENERIC does have.

Most of this document can be found in the man page boot_config(8).

To boot into the User Kernel Config, or UKC, use the -c option at boot time.

boot> boot hd0a:/bsd -c

Or whichever kernel it is you want to boot. Doing this will bring up a UKC prompt. From here you can
issue commands directly to the kernel specifying devices you want to change or disable or even enable.

Here is a list of common commands in the UKC.

● add device - Add a device through copying another
● change devno | device - Modify one or more devices
● disable devno | device - Disable one or more devices
● enable devno | device - Enable one or more devices
● find devno | device - Find one or more devices
● help - Short summary of these commands
● list - List ALL known devices

http://www.openbsd.org/faq/faq5.html (19 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=config&sektion=8#EXAMPLES+(kernel
http://www.openbsd.org/cgi-bin/man.cgi?query=boot_config&sektion=8

5 - Building the System from Source

● exit/quit - Continue Booting
● show [attr [val]] - Show devices with an attribute and optional with a specified value

Once you have your kernel configured, use quit or exit and continue booting. After doing so, you
should make the change permanent in your kernel image, as described in Using config(8) to change your
kernel.

5.9 - Using config(8) to change your kernel

The -e and -u options with config(8) can be extremely helpful and save wasted time compiling your
kernel. The -e flag allows you to enter the UKC or User Kernel Config on a running system. These
changes will then take place on your next reboot. The -u flag tests to see if any changes were made to
the running kernel during boot, meaning you used boot -c to enter the UKC while booting your system.

The following example shows the disabling of the ep* devices in the kernel. For safety's sake you must
use the -o option which writes the changes out to the file specified. For example : config -e -o bsd.new /
bsd will write the changes to bsd.new. The example doesn't use the -o option, therefore changes are just
ignored, and not written back to the kernel binary. For more information pertaining to error and warning
messages read the config(8) man page.

$ sudo config -e /bsd
OpenBSD 4.4 (GENERIC) #1021: Tue Aug 12 17:16:55 MDT 2008
 deraadt@i386.openbsd.org:/usr/src/sys/arch/i386/compile/
GENERIC
warning: no output file specified
Enter 'help' for information
ukc> ?
 help Command help list
 add dev Add a device
 base 8|10|16 Base on large
numbers
 change devno|dev Change device
 disable attr val|devno|dev Disable device
 enable attr val|devno|dev Enable device
 find devno|dev Find device
 list List configuration
 lines count # of lines per page
 show [attr [val]] Show attribute
 exit Exit, without
saving changes
 quit Quit, saving
current changes

http://www.openbsd.org/faq/faq5.html (20 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=config&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=config&sektion=8

5 - Building the System from Source

 timezone [mins [dst]] Show/change timezone
 nmbclust [number] Show/change
NMBCLUSTERS
 cachepct [number] Show/change
BUFCACHEPERCENT
 nkmempg [number] Show/change
NKMEMPAGES
 shmseg [number] Show/change SHMSEG
 shmmaxpgs [number] Show/change
SHMMAXPGS
ukc> list
 0 audio* at sb0|sb*|gus0|pas0|sp0|ess*|wss0|wss*|ym*|eap*|
eso*|sv*|neo*|cmpci*
|clcs*|clct*|auich*|autri*|auvia*|fms*|uaudio*|maestro*|
esa*|yds*|emu* flags 0x0
 1 midi* at sb0|sb*|opl*|opl*|opl*|opl*|ym*|mpu*|autri*
flags 0x0
 2 nsphy* at aue*|xe*|ef*|gx*|stge*|bge*|nge*|sk*|ste*|
sis*|sf*|wb*|tx*|tl*|vr*
|ne0|ne1|ne2|ne*|ne*|ne*|dc*|dc*|rl*|fxp*|fxp*|xl*|xl*|ep0|
ep0|ep0|ep*|ep*|ep*|e
p*|ep* phy -1 flags 0x0
 3 nsphyter* at aue*|xe*|ef*|gx*|stge*|bge*|nge*|sk*|ste*|
sis*|sf*|wb*|tx*|tl*|
vr*|ne0|ne1|ne2|ne*|ne*|ne*|dc*|dc*|rl*|fxp*|fxp*|xl*|xl*|
ep0|ep0|ep0|ep*|ep*|ep
|ep|ep* phy -1 flags 0x0
 4 qsphy* at aue*|xe*|ef*|gx*|stge*|bge*|nge*|sk*|ste*|
sis*|sf*|wb*|tx*|tl*|vr*
|ne0|ne1|ne2|ne*|ne*|ne*|dc*|dc*|rl*|fxp*|fxp*|xl*|xl*|ep0|
ep0|ep0|ep*|ep*|ep*|e
p*|ep* phy -1 flags 0x0
 5 inphy* at aue*|xe*|ef*|gx*|stge*|bge*|nge*|sk*|ste*|
sis*|sf*|wb*|tx*|tl*|vr*
|ne0|ne1|ne2|ne*|ne*|ne*|dc*|dc*|rl*|fxp*|fxp*|xl*|xl*|ep0|
ep0|ep0|ep*|ep*|ep*|e
p*|ep* phy -1 flags 0x0
 6 iophy* at aue*|xe*|ef*|gx*|stge*|bge*|nge*|sk*|ste*|
sis*|sf*|wb*|tx*|tl*|vr*
|ne0|ne1|ne2|ne*|ne*|ne*|dc*|dc*|rl*|fxp*|fxp*|xl*|xl*|ep0|
ep0|ep0|ep*|ep*|ep*|e
p*|ep* phy -1 flags 0x0
 7 eephy* at aue*|xe*|ef*|gx*|stge*|bge*|nge*|sk*|ste*|

http://www.openbsd.org/faq/faq5.html (21 of 28)4/29/2009 5:05:05 PM

5 - Building the System from Source

sis*|sf*|wb*|tx*|tl*|vr*
|ne0|ne1|ne2|ne*|ne*|ne*|dc*|dc*|rl*|fxp*|fxp*|xl*|xl*|ep0|
ep0|ep0|ep*|ep*|ep*|e
p*|ep* phy -1 flags 0x0
 8 exphy* at aue*|xe*|ef*|gx*|stge*|bge*|nge*|sk*|ste*|
sis*|sf*|wb*|tx*|tl*|vr*
|ne0|ne1|ne2|ne*|ne*|ne*|dc*|dc*|rl*|fxp*|fxp*|xl*|xl*|ep0|
ep0|ep0|ep*|ep*|ep*|e
p*|ep* phy -1 flags 0x0
[...snip...]
ukc> disable ep
 93 ep0 disabled
 94 ep* disabled
 95 ep* disabled
261 ep0 disabled
262 ep0 disabled
263 ep* disabled
264 ep* disabled
323 ep* disabled
ukc> quit
not forced

In the above example, all ep* devices are disabled in the kernel and will not be probed. In some
situations where you have used the UKC during boot, via boot -c, you will need these changes to be
written out permanently. To do this you need to use the -u option. In the following example, the
computer was booted into the UKC and the wi(4) device was disabled. Since changes made with boot -c
are NOT permanent, these changes must be written out. This example writes the changes made from
boot -c into a new kernel binary bsd.new.

$ sudo config -e -u -o bsd.new /bsd
OpenBSD 4.4 (GENERIC) #1021: Tue Aug 12 17:16:55 MDT 2008
 deraadt@i386.openbsd.org:/usr/src/sys/arch/i386/compile/
GENERIC
Processing history...
105 wi* disabled
106 wi* disabled
Enter 'help' for information
ukc> quit

5.10 - Getting more verbose output during boot

Getting more verbose output can be very helpful when trying to debug problems when booting. If you

http://www.openbsd.org/faq/faq5.html (22 of 28)4/29/2009 5:05:05 PM

5 - Building the System from Source

have a problem wherein your boot floppy won't boot and need to get more information, simply reboot.
When you get to the "boot>" prompt, boot with boot -c. This will bring you into the UKC>, then do:

UKC> verbose
autoconf verbose enabled
UKC> quit

Now you will be given extremely verbose output upon boot.

5.11 - Common problems, tips and questions when compiling
and building

Most of the time, problems in the build process are caused by not following the above directions
carefully. There are occasional real problems with building -current from the most recent snapshot, but
failures when building -release or -stable are almost always user error.

Most problems are usually one of the following:

● Failing to start from the appropriate binary, including attempting to upgrade from source or
assuming a week old snapshot is "close enough".

● Checking out the wrong branch of the tree.
● Not following the process.
● Trying to customize or "optimize" your system.

Here are some additional problems you might encounter, however:

5.11.1 - The build stopped with a "Signal 11" error

Building OpenBSD and other programs from source is a task which pushes hardware harder than most
others, making intensive use of CPU, disk and memory. As a result, if you have hardware which has a
problem, the most likely time for that problem to appear is during a build. Signal 11 failures are typically
caused by hardware problems, very often memory problems, but can also be CPU, main board, or heat
issues. Your system may actually be very stable otherwise, but unable to compile programs.

You will probably find it best to repair or replace the components that are causing trouble, as problems
may show themselves in other ways in the future. If you have hardware which you really wish to use and
causes you no other problem, simply install a snapshot or a release.

For much more information, see the Sig11 FAQ.

http://www.openbsd.org/faq/faq5.html (23 of 28)4/29/2009 5:05:05 PM

http://www.bitwizard.nl/sig11/

5 - Building the System from Source

5.11.2 - "make build" fails with "cannot open output file snake: is a directory"

This is the result of two separate errors:

● You did not fetch or update your CVS tree properly. When doing a CVS checkout operation,
you must use the "-P" option, when you update your source tree with CVS, you must use "-Pd"
options to cvs(1), as documented above. These options make sure new directories are added and
removed from the tree as OpenBSD evolves.

● You did not properly create the obj directory before your build. Building the tree without
a /usr/obj directory is not supported.

It is important to carefully follow the instructions when fetching and building your tree.

5.11.3 - My IPv6-less system doesn't work!

Yes. Please do not make modifications to the base system that you don't understand the implications of.
One "little" change in the kernel can have very large impact to the entire rest of the system. Please re-
read this.

5.11.4 - Oops! I forgot to make the /usr/obj directory first!

By doing a "make build" before doing a "make obj", you will end up with the object files scattered in
your /usr/src directory. This is a bad thing. If you wish to try to avoid re-fetching your entire src tree
again, you can try the following to clean out obj files:

 # cd /usr/src
 # find . -type l -name obj | xargs rm
 # make cleandir
 # rm -rf /usr/obj/*
 # make obj

5.11.5 - Tip: Put /usr/obj on its own partition

If you build often, you may find it faster to put /usr/obj on its own partition. The benefit is simple, it
is typically faster to:

 # umount /usr/obj
 # newfs YourObjPartition
 # mount /usr/obj

than to "rm -rf /usr/obj/*".

http://www.openbsd.org/faq/faq5.html (24 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=cvs&sektion=1

5 - Building the System from Source

5.11.6 - How do I not build parts of the tree?

Sometimes, you may wish to not build certain parts of the tree, typically because you have installed a
replacement for an included application from packages, or wish to make a "smaller" release for whatever
reason. The solution to this is to use the SKIPDIR option of /etc/mk.conf.

Note: it is possible to make a broken system this way. The results of this option are not supported by the
OpenBSD project.

5.11.7 - Where can I learn more about the build process?

Here are some other resources:

● release(8)
● afterboot(8)
● mk.conf(5)
● /usr/src/Makefile
● Patch Branches (-stable)
● (for X) /usr/X11R6/README on your installed system

5.11.8 - I didn't see any snapshots on the FTP site. Where did they go?

Snapshots may be removed as they become old (or no longer relevant) or near the time of a new -
release.

5.11.9 - How do I bootstrap a newer version of the compiler (gcc)?

You should really just install the latest snapshot.

OpenBSD now supports two compilers in-tree, gcc v3.3.5 used by most platforms, but also gcc v2.95.3
used by a few platforms which haven't been converted yet, or may never be converted due to lack of
gcc3 support or poor gcc3 performance.

The two compilers are in different parts of the tree:

● gcc3: /usr/src/gnu/usr.bin/gcc
● gcc2: /usr/src/gnu/egcs/gcc

Because upgrading a compiler is a bit of a chicken-and-egg problem, changes to the in-tree compiler

http://www.openbsd.org/faq/faq5.html (25 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=mk.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=release&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=afterboot&sektion=8#COMPILING+A
http://www.openbsd.org/cgi-bin/man.cgi?query=mk.conf&sektion=5
http://www.openbsd.org/cgi-bin/cvsweb/src/Makefile
http://www.openbsd.org/stable.html

5 - Building the System from Source

require a little extra attention. You have to build the compiler twice -- the first build produces a compiler
that generates new code but runs with code generated by the old compiler, the second build makes it a
completely new compiler. In general, you'll want to perform the following procedure:

 If your platform uses gcc 2.95.3:
 # rm -r /usr/obj/gnu/egcs/gcc/*
 # cd /usr/src/gnu/egcs/gcc
 - or -
 If your platform uses gcc 3.3.5:
 # rm -r /usr/obj/gnu/usr.bin/gcc/*
 # cd /usr/src/gnu/usr.bin/gcc

 Common build procedure for v3.3.5 or v2.95.3
 # make -f Makefile.bsd-wrapper clean
 # make -f Makefile.bsd-wrapper obj
 # make -f Makefile.bsd-wrapper depend
 # make -f Makefile.bsd-wrapper
 # make -f Makefile.bsd-wrapper install
 # make -f Makefile.bsd-wrapper clean
 # make -f Makefile.bsd-wrapper depend
 # make -f Makefile.bsd-wrapper
 # make -f Makefile.bsd-wrapper install

And then run a normal make build.

5.11.10 - What is the best way to update /etc, /var, and /dev?

As a policy, software in the OpenBSD tree does not modify files in /etc automatically. This means it is
always up to the administrator to make the necessary modifications there. Upgrades are no exception. To
update files in these directories, first determine what changes have occurred to the base (distribution)
files, and then manually reapply these changes.

For example, to see the files in the tree that have changed most recently, do a:

 # cd /usr/src/etc
 # ls -lt |more

To see all the changes in /etc between arbitrary versions of OpenBSD, you can use CVS. For example,
to see the changes between 4.3 and 4.4 do a:

 # cd /usr/src/etc
 # cvs diff -u -rOPENBSD_4_3 -rOPENBSD_4_4

http://www.openbsd.org/faq/faq5.html (26 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/anoncvs.html

5 - Building the System from Source

To see the changes between 4.4 and -current ("HEAD"), use:

 # cd /usr/src/etc
 # cvs diff -u -rOPENBSD_4_4 -rHEAD

The /dev/MAKEDEV script is not updated automatically as part of the make build process, however it is
installed as as part of a binary upgrade. As a general rule, it is a good idea to copy (if needed) and run
this script from your source tree when performing an upgrade:

 # cd /dev
 # cp /usr/src/etc/etc.`machine`/MAKEDEV ./
 # ./MAKEDEV all

Once you have identified the changes, reapply them to your local tree, preserving any local
configuration you may have done.

Typical /etc changes to watch out for between releases include:

● Additions to /etc/protocols and /etc/services
● New sysctls (see /etc/sysctl.conf)
● Changes to the default cron jobs. See /etc/daily, /etc/weekly, /etc/monthly, and /
etc/security

● All rc scripts, including netstart
● Device changes, see above
● File hierarchy changes in /etc/mtree, see below
● New users (/etc/passwd) and groups (/etc/group)

These changes are summarized in upgrade44.html (for going to 4.4-release) or current.html (for going to
-current).

5.11.11 - Is there an easy way to make all the file hierarchy changes?

From time to time, files or directories are added to, or removed from the file hierarchy. Also, ownership
information for portions of the filesystem may change. An easy way to ensure that your file hierarchy is
up-to-date is to use the mtree(8) utility.

First, fetch the latest source, then do the following:

 # cd /usr/src/etc/mtree
 # install -c -o root -g wheel -m 600 special /etc/mtree

http://www.openbsd.org/faq/faq5.html (27 of 28)4/29/2009 5:05:05 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=MAKEDEV&sektion=8&arch=i386
http://www.openbsd.org/faq/upgrade44.html
http://www.openbsd.org/faq/current.html
http://www.openbsd.org/cgi-bin/man.cgi?query=hier&sektion=7
http://www.openbsd.org/cgi-bin/man.cgi?query=mtree&sektion=8

5 - Building the System from Source

 # install -c -o root -g wheel -m 444 4.4BSD.dist /etc/mtree
 # mtree -qdef /etc/mtree/4.4BSD.dist -p / -u

Your file hierarchy should now be up to date.

5.11.12 - Can I cross-compile? Why not?

Cross-compiling tools are in the system, for use by developers bringing up a new platform. However,
they are not maintained for general use.

When the developers bring up support for a new platform, one of the first big tests is a native-build.
Building the system from source puts considerable load on the OS and machine, and does a very good
job of testing how well the system really works. For this reason, OpenBSD does all the build process on
the platform the build is being used for, also known as "native building". Without native building, it is
much more difficult to be sure that the various platforms are actually running reliably, and not just
booting.

[FAQ Index] [To Section 4 - Installation Guide] [To Section 6 - Networking]

 www@openbsd.org
$OpenBSD: faq5.html,v 1.170 2009/03/11 23:30:48 nick Exp $

http://www.openbsd.org/faq/faq5.html (28 of 28)4/29/2009 5:05:05 PM

mailto:www@openbsd.org

6 - Networking

[FAQ Index] [To Section 5 - Building the System from Source] [To Section 7 - Keyboard and Display
Controls]

6 - Networking

Table of Contents

● 6.1 - Before we go any further
● 6.2 - Network configuration

❍ 6.2.1 - Identifying and setting up your network interfaces
❍ 6.2.2 - Default gateway
❍ 6.2.3 - DNS resolution
❍ 6.2.4 - Host name
❍ 6.2.5 - Activating the changes
❍ 6.2.6 - Checking routes
❍ 6.2.7 - Setting up your OpenBSD box as a gateway
❍ 6.2.8 - Setting up aliases on interfaces

● 6.3 - How do I filter and firewall with OpenBSD?
● 6.4 - Dynamic Host Configuration Protocol (DHCP)

❍ 6.4.1 - DHCP Client
❍ 6.4.2 - DHCP Server

● 6.5 - Point to Point Protocol
● 6.6 - Tuning networking parameters
● 6.7 - Using NFS
● 6.9 - Setting up a bridge with OpenBSD
● 6.10 - How do I boot using PXE?
● 6.11 - The Common Address Redundancy Protocol (CARP)
● 6.12 - Using OpenNTPD
● 6.13 - What are my wireless networking options?
● 6.14 - How can I do equal-cost multipath routing?

http://www.openbsd.org/faq/faq6.html (1 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/index.html

6 - Networking

6.1 - Before we go any further

For the bulk of this document, it helps if you have read and at least partially understood the Kernel
Configuration and Setup section of the FAQ, and the ifconfig(8) and netstat(1) man pages.

If you are a network administrator, and you are setting up routing protocols, if you are using your
OpenBSD box as a router, if you need to go in depth into IP networking, you really need to read
Understanding IP Addressing. This is an excellent document. "Understanding IP Addressing" contains
fundamental knowledge to build upon when working with IP networks, especially when you deal with or
are responsible for more than one network.

If you are working with applications such as web servers, ftp servers, and mail servers, you may benefit
greatly by reading the RFCs. Most likely, you can't read all of them. Pick some topics that you are
interested in, or that you use in your network environment. Look them up, find out how they are
intended to work. The RFCs define many (thousands of) standards for protocols on the Internet and how
they are supposed to work.

6.2 - Network configuration

Normally, OpenBSD is initially configured by the installation process. However, it is good to understand
what is happening in this process and how it works. All network configuration is done using simple text
files in the /etc directory.

6.2.1 - Identifying and setting up your network interfaces

In OpenBSD, interfaces are named for the type of card, not for the type of connection. You can see your
network card get initialized during the booting process, or after the booting process using the dmesg(8)
command. You also have the chance of seeing your network interface using the ifconfig(8) command.
For example, here is the output of dmesg for a Intel Fast Ethernet network card, which uses the device
name fxp.

fxp0 at pci0 dev 10 function 0 "Intel 82557" rev 0x0c: irq
5, address 00:02:b3:2b:10:f7
inphy0 at fxp0 phy 1: i82555 10/100 media interface, rev. 4

If you don't know what your device name is, please look at the supported hardware list for your
platform. You will find a list of many common card names and their OpenBSD device names here.
Combine the short alphabetical device name (such as fxp) with a number assigned by the kernel and you
have an interface name (such as fxp0). The number is assigned based on various criteria, depending
upon the card and other details of the system. Some cards are assigned by the order they are found

http://www.openbsd.org/faq/faq6.html (2 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=netstat&sektion=1
http://www.3com.com/other/pdfs/infra/corpinfo/en_US/501302.pdf
http://www.rfc-editor.org/rfc.html
http://www.openbsd.org/cgi-bin/man.cgi?query=dmesg&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8
http://www.openbsd.org/plat.html

6 - Networking

during bus probing. Others may be by hardware resource settings or MAC address.

You can find out what network interfaces have been identified by using the ifconfig(8) utility. The
following command will show all network interfaces on a system. This sample output shows us only one
physical Ethernet interface, an fxp(4).

$ ifconfig
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 33224
 inet 127.0.0.1 netmask 0xff000000
 inet6 ::1 prefixlen 128
 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x5
lo1: flags=8008<LOOPBACK,MULTICAST> mtu 33224
fxp0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST>
mtu 1500
 address: 00:04:ac:dd:39:6a
 media: Ethernet autoselect (100baseTX full-duplex)
 status: active
 inet 10.0.0.38 netmask 0xffffff00 broadcast
10.0.0.255
 inet6 fe80::204:acff:fedd:396a%fxp0 prefixlen 64
scopeid 0x1
pflog0: flags=0<> mtu 33224
pfsync0: flags=0<> mtu 2020
sl0: flags=c010<POINTOPOINT,LINK2,MULTICAST> mtu 296
sl1: flags=c010<POINTOPOINT,LINK2,MULTICAST> mtu 296
ppp0: flags=8010<POINTOPOINT,MULTICAST> mtu 1500
ppp1: flags=8010<POINTOPOINT,MULTICAST> mtu 1500
tun0: flags=10<POINTOPOINT> mtu 3000
tun1: flags=10<POINTOPOINT> mtu 3000
enc0: flags=0<> mtu 1536
bridge0: flags=0<> mtu 1500
bridge1: flags=0<> mtu 1500
vlan0: flags=0<> mtu 1500
 address: 00:00:00:00:00:00
vlan1: flags=0<> mtu 1500
 address: 00:00:00:00:00:00
gre0: flags=9010<POINTOPOINT,LINK0,MULTICAST> mtu 1450
carp0: flags=0<> mtu 1500
carp1: flags=0<> mtu 1500
gif0: flags=8010<POINTOPOINT,MULTICAST> mtu 1280
gif1: flags=8010<POINTOPOINT,MULTICAST> mtu 1280
gif2: flags=8010<POINTOPOINT,MULTICAST> mtu 1280
gif3: flags=8010<POINTOPOINT,MULTICAST> mtu 1280

http://www.openbsd.org/faq/faq6.html (3 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=fxp&sektion=4

6 - Networking

As you can see here, ifconfig(8) gives us a lot more information than we need at this point. But, it still
allows us to see our interface. In the above example, the interface card is already configured. This is
obvious because an IP network is already configured on fxp0, hence the values "inet 10.0.0.38 netmask
0xffffff00 broadcast 10.0.0.255". Also, the UP and RUNNING flags are set.

Finally, you will notice several other interfaces come enabled by default. These are virtual interfaces that
serve various functions. The following manual pages describe them:

● lo - Loopback Interface
● pflog - Packet Filter Logging Interface
● sl - SLIP Network Interface
● ppp - Point to Point Protocol
● tun - Tunnel Network Interface
● enc - Encapsulating Interface
● bridge - Ethernet Bridge Interface
● vlan - IEEE 802.1Q Encapsulation Interface
● gre - GRE/MobileIP Encapsulation Interface
● gif - Generic IPv4/IPv6 Tunnel Interface
● carp - Common Address Redundancy Protocol Interface

The interface is configured at boot time using the /etc/hostname.if(5) files, where if will be replaced by
the full name of your interface, for the example above, /etc/hostname.fxp0.

The layout of this file is simple:

address_family address netmask broadcast [other options]

Much more detail about the format of this file can be found in the hostname.if(5) man page. You will
need to read this for less trivial configurations.

A typical interface configuration file, configured for an IPv4 address, would look like this:

$ cat /etc/hostname.fxp0
inet 10.0.0.38 255.255.255.0 NONE

In this case, we have defined an IPv4 (inet) address, with an IP address of 10.0.0.38, a subnet mask of
255.255.255.0 and no specific broadcast address (which will default to 10.0.0.255 in this case).

You could also specify media types for Ethernet, say, if you wanted to force 100baseTX full-duplex

http://www.openbsd.org/faq/faq6.html (4 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=lo&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=pflog&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=sl&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=ppp&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=tun&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=enc&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=bridge&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=vlan&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=gre&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=gif&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=carp&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=hostname.if&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=hostname.if&sektion=5

6 - Networking

mode.

inet 10.0.0.38 255.255.255.0 NONE media 100baseTX mediaopt
full-duplex

(Of course, you should never force full duplex mode unless both sides of the connection are set to do
this! In the absence of special needs, media settings should be excluded. A more likely case might be to
force 10base-T or half duplex when your infrastructure requires it.)

Or, you may want to use special flags specific to a certain interface. The format of the hostname file
doesn't change much!

$ cat /etc/hostname.vlan0
inet 172.21.0.31 255.255.255.0 NONE vlan 2 vlandev fxp1

6.2.2 - Default gateway

Put the IP of your gateway in the file /etc/mygate. This will allow for your gateway to be set upon boot.
This file consists of one line, with just the address of this machine's gateway address:

10.0.0.1

It is possible use a symbolic name there, but be careful: you can't assume things like the resolver are
fully configured or even reachable until AFTER the default gateway is configured. In other words, it had
better be an IP address or something that is defined in the /etc/hosts file.

6.2.3 - DNS Resolution

DNS resolution is controlled by the file /etc/resolv.conf. Here is an example of a /etc/resolv.conf file:

search example.com
nameserver 125.2.3.4
nameserver 125.2.3.5
lookup file bind

In this case, the default domain name will be example.com, there are two DNS resolvers,
125.2.3.4 and 125.2.3.5 specified, and the /etc/hosts file will be consulted before the DNS
resolvers are.

As with virtually all Unix (and many non-Unix) systems, there is an /etc/hosts file which can be used to
specify systems that are not in (or if used with the above "lookup" priority, not as desired in) the formal

http://www.openbsd.org/faq/faq6.html (5 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=mygate&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=resolv.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=hosts&sektion=5

6 - Networking

DNS system.

If you are using DHCP, you'll want to read 6.4 - DHCP taking note of resolv.conf.tail(5).

6.2.4 - Host name

Every Unix machine has a name. In OpenBSD, the name is specified as a "Fully Qualified Domain
Name" (FQDN) in one line in the file /etc/myname. If this machine is named "puffy" and in the domain
"example.com", the file would contain the one line:

puffy.example.com

6.2.5 - Activating the changes

From here, you can either reboot or run the /etc/netstart script. You can do this by simply typing (as
root):

sh /etc/netstart
writing to routing socket: File exists
add net 127: gateway 127.0.0.1: File exists
writing to routing socket: File exists
add net 224.0.0.0: gateway 127.0.0.1: File exists

Notice that a few errors were produced. By running this script, you are reconfiguring things which are
already configured. As such, some routes already exist in the kernel routing table. From here your
system should be up and running. Again, you can check to make sure that your interface was setup
correctly with ifconfig(8).

Even though you can completely reconfigure networking on an OpenBSD system without rebooting, a
reboot is HIGHLY recommended after any significant reconfiguration. The reason for this is the
environment at boot is somewhat different than it is when the system is completely up and running. For
example, if you had specified a DNS-resolved symbolic name in any of the files, you would probably
find it worked as expected after reconfigure, but on initial boot, your external resolver may not be
available, so the configuration will fail.

6.2.6 - Checking routes

You can check your routes via netstat(1) or route(8). If you are having routing problems, you may want
to use the -n flag to route(8) which prints the IP addresses rather than doing a DNS lookup and
displaying the hostname. Here is an example of viewing your routing tables using both programs.

http://www.openbsd.org/faq/faq6.html (6 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=resolv.conf.tail&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=myname&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=netstat&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=route&sektion=8

6 - Networking

$ netstat -rn
Routing tables

Internet:
Destination Gateway Flags Refs
Use Mtu Interface
default 10.0.0.1 UGS 0
86 - fxp0
127/8 127.0.0.1 UGRS 0
0 - lo0
127.0.0.1 127.0.0.1 UH 0
0 - lo0
10.0.0/24 link#1 UC 0
0 - fxp0
10.0.0.1 aa:0:4:0:81:d UHL 1
0 - fxp0
10.0.0.38 127.0.0.1 UGHS 0
0 - lo0
224/4 127.0.0.1 URS 0
0 - lo0

Encap:
Source Port Destination Port Proto SA
(Address/SPI/Proto)

$ route show
Routing tables

Internet:
Destination Gateway Flags
default 10.0.0.1 UG
127.0.0.0 LOCALHOST UG
localhost LOCALHOST UH
10.0.0.0 link#1 U
10.0.0.1 aa:0:4:0:81:d UH
10.0.0.38 LOCALHOST UGH
BASE-ADDRESS.MCA LOCALHOST U

6.2.7 - Setting up your OpenBSD box as a forwarding gateway

This is the basic information you need to set up your OpenBSD box as a gateway (also called a router).
If you are using OpenBSD as a router on the Internet, we suggest that you also read the Packet Filter
setup instructions below to block potentially malicious traffic. Also, due to the low availability of IPv4

http://www.openbsd.org/faq/faq6.html (7 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ip&sektion=4

6 - Networking

addresses from network service providers and regional registries, you may want to look at Network
Address Translation for information on conserving your IP address space.

The GENERIC kernel already has the ability to allow IP Forwarding, but needs to be turned on. You
should do this using the sysctl(8) utility. To change this permanently you should edit the file /etc/sysctl.
conf to allow for IP Forwarding. To do so add this line in that configuration file.

net.inet.ip.forwarding=1

To make this change without rebooting you would use the sysctl(8) utility directly. Remember though
that this change will no longer exist after a reboot, and needs to be run as root.

sysctl net.inet.ip.forwarding=1
net.inet.ip.forwarding: 0 -> 1

Now modify the routes on the other hosts on both sides. There are many possible uses of OpenBSD as a
router by using software such as OpenBSD's own OpenBGPD, routed(8), mrtd, zebra, and quagga.
OpenBSD has support in the ports collection for zebra, quagga, and mrtd. OpenBGPD and routed are
installed as part of the base system. OpenBSD supports several T1, HSSI, ATM, FDDI, Ethernet, and
serial (PPP/SLIP) interfaces.

6.2.8 - Setting up aliases on an interface

OpenBSD has a simple mechanism for setting up IP aliases on an interface. To do this simply edit the
file /etc/hostname.<if>. This file is read upon boot by the /etc/netstart(8) script, which is part of the rc
startup hierarchy. For the example, we assume that the user has an interface dc0 and is on the network
192.168.0.0. Other important information:

● IP for dc0 is 192.168.0.2
● NETMASK is 255.255.255.0

A few side notes about aliases. In OpenBSD you use the interface name only. There is no difference
between the first alias and the second alias. Unlike some other operating systems, OpenBSD doesn't
refer to them as dc0:0, dc0:1. If you are referring to a specific aliased IP address with ifconfig, or adding
an alias, be sure to say "ifconfig int alias" instead of just "ifconfig int" at the command
line. You can delete aliases with "ifconfig int delete".

Assuming you are using multiple IP addresses which are in the same IP subnet with aliases, your
netmask setting for each alias becomes 255.255.255.255. They do not need to follow the netmask of the
first IP bound to the interface. In this example, /etc/hostname.dc0, two aliases are added to the device
dc0, which, by the way, was configured as 192.168.0.2 netmask 255.255.255.0.

http://www.openbsd.org/faq/faq6.html (8 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=8
http://www.openbgpd.org/
http://www.openbsd.org/cgi-bin/man.cgi?query=routed&sektion=8
http://sourceforge.net/projects/mrt
http://www.zebra.org/
http://www.quagga.net/
http://www.openbsd.org/cgi-bin/man.cgi?query=hostname.if&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=netstart&sektion=8

6 - Networking

cat /etc/hostname.dc0
inet 192.168.0.2 255.255.255.0 NONE media 100baseTX
inet alias 192.168.0.3 255.255.255.255
inet alias 192.168.0.4 255.255.255.255

Once you've made this file, it just takes a reboot for it to take effect. You can, however, bring up the
aliases by hand using the ifconfig(8) utility. To bring up the first alias you would use the command:

ifconfig dc0 inet alias 192.168.0.3 netmask
255.255.255.255

(but again, a reboot is recommended to make sure you entered everything as you expected it to be!)

To view these aliases you must use the command:

$ ifconfig -A
dc0: flags=8863<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,
MULTICAST>
 media: Ethernet manual
 inet 192.168.0.2 netmask 0xffffff00 broadcast
192.168.0.255
 inet 192.168.0.3 netmask 0xffffffff broadcast
192.168.0.3

6.3 - How do I filter and firewall with OpenBSD?

Packet Filter (from here on referred to as PF) is OpenBSD's system for filtering IP traffic and doing
Network Address Translation. PF is also capable of normalizing and conditioning IP traffic and
providing bandwidth control and packet prioritization, and can be used to create powerful and flexible
firewalls. It is described in the PF User's Guide.

6.4 - Dynamic Host Configuration Protocol (DHCP)

Dynamic Host Configuration Protocol is a way to configure network interfaces "automatically".
OpenBSD can be a DHCP server (configuring other machines), a DHCP client (configured by another
machine), and in some cases, can be both.

6.4.1 - DHCP Client

http://www.openbsd.org/faq/faq6.html (9 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8
http://www.openbsd.org/faq/pf/index.html

6 - Networking

To use the DHCP client dhclient(8) included with OpenBSD, edit /etc/hostname.xl0 (this is
assuming your main Ethernet interface is xl0. Yours might be ep0 or fxp0 or something else.) All you
need to put in this hostname file is 'dhcp':

echo dhcp > /etc/hostname.xl0

This will cause OpenBSD to automatically start the DHCP client on boot. OpenBSD will gather its IP
address, default gateway, and DNS servers from the DHCP server.

If you want to start a DHCP client from the command line, make sure /etc/dhclient.conf exists,
then try:

dhclient fxp0

Where fxp0 is the interface on which you want to receive DHCP.

No matter how you start the DHCP client, you can edit the /etc/dhclient.conf file to not update
your DNS according to the dhcp server's idea of DNS by first uncommenting the 'request' lines in it
(they are examples of the default settings, but you need to uncomment them to override dhclient's
defaults.)

request subnet-mask, broadcast-address, time-offset,
routers,
 domain-name, domain-name-servers, host-name, lpr-
servers, ntp-servers;

and then remove domain-name-servers. Of course, you may want to remove hostname, or other
settings too.

By changing options in your dhclient.conf(5) file, you're telling the DHCP client how to build your
resolv.conf(5) file. The DHCP client overrides any information you already have in resolv.conf(5) with
the information it retrieves from the DHCP server. Therefore, you'll lose any changes you made
manually to resolv.conf.

There are two mechanisms available to prevent this:

● OPTION MODIFIERS (default, supersede, prepend, and append) allow you to override any
of the options in dhclient.conf(5).

● resolv.conf.tail(5) allows you to append anything you want to the resolv.conf(5) file
created by dhclient(8).

http://www.openbsd.org/faq/faq6.html (10 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=dhclient&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=dhclient.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=resolv.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=dhclient.conf&sektion=5#OPTION+MODIFIERS
http://www.openbsd.org/cgi-bin/man.cgi?query=resolv.conf.tail&sektion=5

6 - Networking

An example would be if you're using DHCP but you want to append lookup file bind to the
resolv.conf(5) created by dhclient(8). There is no option for this in dhclient.conf so you must use
resolv.conf.tail to preserve this.

echo "lookup file bind" > /etc/resolv.conf.tail

Now your resolv.conf(5) should include "lookup file bind" at the end.

nameserver 192.168.1.1
nameserver 192.168.1.2
lookup file bind

6.4.2 - DHCP Server

If you want to use OpenBSD as a DHCP server dhcpd(8), edit /etc/rc.conf.local so that it
contains the line dhcpd_flags="interface", replacing interface with the list of interfaces
that dhcpd(8) should listen on, for example:

 # echo 'dhcpd_flags="xl1 xl2 xl3"' >>/etc/rc.conf.local

Then, edit /etc/dhcpd.conf. The options are pretty self-explanatory.

 option domain-name "example.com";
 option domain-name-servers 192.168.1.3, 192.168.1.5;

 subnet 192.168.1.0 netmask 255.255.255.0 {
 option routers 192.168.1.1;

 range 192.168.1.32 192.168.1.127;
 }

This will tell your DHCP clients that the domain to append to DNS requests is example.com (so, if the
user types in 'telnet joe' then it will send them to joe.example.com). It will point them to DNS servers
192.168.1.3 and 192.168.1.5. For hosts that are on the same network as an Ethernet interface on the
OpenBSD machine, which is in the 192.168.1.0/24 range, it will assign them an IP address between
192.168.1.32 and 192.168.1.127. It will set their default gateway as 192.168.1.1.

If you want to start dhcpd(8) from the command line, after editing /etc/dhcpd.conf, try:

 # touch /var/db/dhcpd.leases
 # dhcpd fxp0

http://www.openbsd.org/faq/faq6.html (11 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=dhcpd&sektion=8

6 - Networking

The touch line is needed to create an empty dhcpd.leases file before dhcpd(8) can start. The
OpenBSD startup scripts will create this file if needed on boot, but if you are starting dhcpd(8)
manually, you must create it first. fxp0 is an interface that you want to start serving DHCP on.

If you are serving DHCP to a Windows box, you may want dhcpd(8) to give the client a 'WINS' server
address. To make this happen, just add the following line to your /etc/dhcpd.conf:

 option netbios-name-servers 192.168.92.55;

(where 192.168.92.55 is the IP of your Windows or Samba server.) See dhcp-options(5) for more
options that your DHCP clients may want.

6.5 - PPP

The Point to Point Protocol (PPP) is generally what is used to create a connection to your ISP via a dial-
up modem. OpenBSD has 2 ways of doing this:

● pppd(8) - the kernel PPP daemon
● ppp(8) - the userland PPP daemon

Both ppp and pppd perform similar functions, in different ways. pppd works with the kernel ppp(4)
driver, whereas ppp works in userland with tun(4). This document will cover only the userland PPP
daemon, since it is easier to debug and to interact with. To start off you will need some simple
information about your ISP. Here is a list of helpful information that you will need.

● Your ISP's dial-up number
● Your nameserver
● Your username and password
● Your gateway

Some of these you can do without, but would be helpful in setting up ppp. The userland PPP daemon
uses the file /etc/ppp/ppp.conf as its configuration file. There are many helpful files in /etc/ppp that can
have different setups for many different situations. You should take a browse through that directory.

Initial Setup - for PPP(8)

Initial Setup for the userland PPP daemon consists of editing your /etc/ppp/ppp.conf file. This file
doesn't exist by default, but there is a file /etc/ppp/ppp.conf.sample which you can simply edit to create
your own ppp.conf file. Here I will start with the simplest and probably most used setup. Here is a quick
ppp.conf file that simply sets some defaults:

http://www.openbsd.org/faq/faq6.html (12 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=dhcp-options&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=pppd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ppp&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ppp&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=tun&sektion=4
http://www.openbsd.org/cgi-bin/cvsweb/src/etc/ppp/ppp.conf.sample

6 - Networking

default:
set log Phase Chat LCP IPCP CCP tun command
set device /dev/cua01
set speed 115200
set dial "ABORT BUSY ABORT NO\\sCARRIER TIMEOUT 5 \"\" AT
OK-AT-OK ATE1Q0 OK \\dATDT\\T TIMEOUT 40 CONNECT"

The section under the default: tag gets executed each time. Here we set up all our critical
information. With "set log" we set our logging levels. This can be changed: refer to ppp(8) for more info
on setting up logging levels. Our device gets set with "set device". This is the device that the modem is
on. In this example the modem is on com port 2. Therefore com port 1 would be /dev/cua00. With "set
speed" we set the speed of our dial-up connection and with "set dial" we set our dial-up parameters.
With this we can change our timeout time, etc. This line should stay pretty much as it is though.

Now we can move on and set up information specific to our ISP. We do this by adding another tag under
our default: section. This tag can be called anything you want - easiest to just use the name of your
ISP. Here I will use myisp: as our tag referring to our ISP. Here is a simple setup incorporating all we
need to get ourselves connected:

myisp:
set phone 1234567
set login "ABORT NO\\sCARRIER TIMEOUT 5 ogin:--ogin: ppp
word: ppp"
set timeout 120
set ifaddr 10.0.0.1/0 10.0.0.2/0 255.255.255.0 0.0.0.0
add default HISADDR
enable dns

Here we have set up essential info for that specific ISP. The first option "set phone" sets your ISP's dial-
up number. The "set login" sets our login options. Here we have the timeout set to 5; this means that we
will abort our login attempt after 5 seconds if no carrier is found. Otherwise it will wait for "login:" to be
sent and send in your username and password.

In this example our Username = ppp and Password = ppp. These values will need to be changed. The
line "set timeout" sets the idle timeout for the entire connection duration to 120 seconds. The "set ifaddr"
line is a little tricky. Here is a more extensive explanation.

set ifaddr 10.0.0.1/0 10.0.0.2/0 255.255.255.0 0.0.0.0

In the above line, we have it set in the format of "set ifaddr [myaddr[/nn] [hisaddr[/nn] [netmask
[triggeraddr]]]]". So the first IP specified is what we want as our IP. If you have a static IP address, you

http://www.openbsd.org/faq/faq6.html (13 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ppp&sektion=8

6 - Networking

set it here. In our example we use /0 which says that no bits of this IP address need to match and the
whole thing can be replaced. The second IP specified is what we expect as their IP. If you know this you
can specify it. Again in our line we don't know what will be assigned, so we let them tell us. The third
option is our netmask, here set to 255.255.255.0. If triggeraddr is specified, it is used in place of myaddr
in the initial IPCP negotiation. However, only an address in the myaddr range will be accepted. This is
useful when negotiating with some PPP implementations that will not assign an IP number unless their
peer requests ``0.0.0.0''.

The next option used "add default HISADDR" sets our default route to their IP. This is 'sticky', meaning
that if their IP should change, our route will automatically be updated. With "enable dns" we are telling
our ISP to authenticate our nameserver addresses. Do NOT do this if you are running a local DNS, as
ppp will simply circumvent its use by entering some nameserver lines in /etc/resolv.conf.

Instead of traditional login methods, many ISPs now use either CHAP or PAP authentication. If this is
the case, our configuration will look slightly different:

myisp:
set phone 1234567
set authname ppp
set authkey ppp
set login
set timeout 120
set ifaddr 10.0.0.1/0 10.0.0.2/0 255.255.255.0 0.0.0.0
add default HISADDR
enable dns

In the above example, we specify our username (ppp) and password (ppp) using authname and authkey,
respectively. There is no need to specify whether CHAP or PAP authentication is used - it will be
negotiated automatically. "set login" merely specifies to attempt to log in, with the username and
password previously specified.

Using PPP(8)

Now that we have our ppp.conf file set up we can start trying to make a connection to our ISP. I will
detail some commonly used arguments with ppp:

● ppp -auto myisp - This will run ppp, configure your interfaces and connect to your ISP and
then go into the background.

● ppp -ddial myisp - This is similar to -auto, but if your connection is dropped it will try and
reconnect.

If the above fails, try running /usr/sbin/ppp with no options - it will run ppp in interactive mode. The

http://www.openbsd.org/faq/faq6.html (14 of 34)4/29/2009 5:05:12 PM

6 - Networking

options can be specified one by one to check for error or other problems. Using the setup specified
above, ppp will log to /var/log/ppp.log. That log, as well as the man page, all contain helpful
information.

ppp(8) extras

In some situations you might want commands executed as your connection is made or dropped. There
are two files you can create for just these situations: /etc/ppp/ppp.linkup and /etc/ppp/ppp.linkdown.
Sample configurations can be viewed here:

● ppp.linkup
● ppp.linkdown

ppp(8) variations

Many ISPs now offer xDSL services, which are faster than traditional dial-up methods. This includes
variants such as ADSL and SDSL. Although no physical dialing takes place, connection is still based on
the Point to Point Protocol. Examples include:

● PPPoE
● PPPoA
● PPTP

PPPoE/PPPoA

The Point to Point Protocol over Ethernet (PPPoE) is a method for sending PPP packets in Ethernet
frames. The Point to Point Protocol over ATM (PPPoA) is typically run on ATM networks, such as
those found in the UK and Belgium.

Typically this means you can establish a connection with your ISP using just a standard Ethernet card
and Ethernet-based DSL modem (as opposed to a USB-only modem).

If you have a modem which speaks PPPoE/PPPoA, it is possible to configure the modem to do the
connecting. Alternatively, if the modem has a `bridge' mode, it is possible to enable this and have the
modem "pass through" the packets to a machine running PPPoE software (see below).

The main software interface to PPPoE/PPPoA on OpenBSD is pppoe(8), which is a userland
implementation (in much the same way that we described ppp(8), above). A kernel PPPoE
implementation, pppoe(4), has been incorporated into OpenBSD.

http://www.openbsd.org/faq/faq6.html (15 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/cvsweb/src/etc/ppp/ppp.linkup.sample
http://www.openbsd.org/cgi-bin/cvsweb/src/etc/ppp/ppp.linkdown.sample
http://www.openbsd.org/cgi-bin/man.cgi?query=pppoe&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ppp&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=pppoe&sektion=4

6 - Networking

PPTP

The Point to Point Tunneling Protocol (PPTP) is a proprietary Microsoft protocol. A pptp client is
available which interfaces with pppd(8) and is capable of connecting to the PPTP-based Virtual Private
Networks (VPN) used by some cable and xDSL providers. pptp itself must be installed from packages or
ports. Further instructions on setting up and using pptp are available in the man page which is installed
with the pptp package.

6.6 - Tuning networking parameters

One goal of OpenBSD is to have the system Just Work for the vast majority of our users. Twisting knobs
you don't understand is far more likely to break the system than it is to improve its performance. Always
start from the default settings, and only adjust things you actually see a problem with.

VERY FEW people will need to do these things!

6.6.1 - How can I tweak the kernel so that there are a higher number of
retries and longer timeouts for TCP sessions?

You would normally use this to allow for routing or connection problems. Of course, for it to be most
effective, both sides of the connection need to use similar values.

To tweak this, use sysctl and increase the values of:

net.inet.tcp.keepinittime
net.inet.tcp.keepidle
net.inet.tcp.keepintvl

Using sysctl -a, you can see the current values of these (and many other) parameters. To change one, do
something like sysctl net.inet.tcp.keepidle=28800.

6.6.2 - How can I turn on directed broadcasts?

Normally, you don't want to do this. This allows someone to send traffic to the broadcast address(es) of
your connected network(s) if you are using your OpenBSD box as a router.

There are some instances, in closed networks, where this may be useful, particularly when using older
implementations of the NetBIOS protocol. This is another sysctl. sysctl net.inet.ip.
directed-broadcast=1 turns this on. Read about smurf attacks if you want to know why it is off
by default.

http://www.openbsd.org/faq/faq6.html (16 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=pppd&sektion=8
http://www.netscan.org/

6 - Networking

6.6.3 - I don't want the kernel to dynamically allocate a certain port

There is a sysctl for this also. From sysctl(8):

Set the list of reserved TCP ports that should not be allocated by the
kernel dynamically. This can be used to keep daemons from stealing a
specific port that another program needs to function. List elements
may
be separated by commas and/or whitespace.

 # sysctl net.inet.tcp.baddynamic=749,750,751,760,761,871

It is also possible to add or remove ports from the current list.

 # sysctl net.inet.tcp.baddynamic=+748
 # sysctl net.inet.tcp.baddynamic=-871

6.6.4 - How can I increase performance on really high-speed, high traffic
links?

If you are seeing performance limitations when using a high-speed WAN connection transferring lots of
data, you may see a performance gain by altering the following sysctls:

net.inet.tcp.recvspace
net.inet.tcp.sendspace

Try a value like 65536 instead of the default of 16384. Note that very few will see any benefit from this.
Don't adjust this unless you are actually seeing performance below what you expect.

6.7 - Simple NFS usage

NFS, or Network File System, is used to share a filesystem over the network. A few choice man pages to
read before trying to setup a NFS server are:

● nfsd(8)
● mountd(8)
● exports(5)

This section will go through the steps for a simple setup of NFS. This example details a server on a
LAN, with clients accessing NFS on the LAN. It does not talk about securing NFS. We presume you

http://www.openbsd.org/faq/faq6.html (17 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=nfsd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=mountd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=exports&sektion=5

6 - Networking

have already setup packet filtering or other firewalling protection, to prevent outside access. If you are
allowing outside access to your NFS server, and you have any kind of sensitive data stored on it, we
strongly recommend that you employ IPsec. Otherwise, people can potentially see your NFS traffic.
Someone could also pretend to be the IP address which you are allowing into your NFS server. There are
several attacks that can result. When properly configured, IPsec protects against these types of attacks.

Setting up an NFS Server

These services must be enabled and running on the server:

● portmap(8)
● mountd(8)
● nfsd(8)

By default each of these is disabled in OpenBSD. Add the following lines to rc.conf.local(8) to enable
them:

portmap=YES
nfs_server=YES

The next step is to configure the list of filesystems that will be made available for clients to mount.

In this example, we have a server with IP address 10.0.0.1. This server will be serving NFS only to
clients within its own subnet. All of this is configured in the /etc/exports file. This file lists which
filesystems you wish to have accessible via NFS and defines who is able to access them. There are many
options that you can use in /etc/exports; it is best that you read the exports(5) man page. For our example
server, we've setup an exports file that looks like this:

#
NFS exports Database
See exports(5) for more information. Be very careful,
misconfiguration
of this file can result in your filesystems being
readable by the world.
/work -alldirs -ro -network=10.0.0 -mask=255.255.255.0

This means that the local filesystem /work will be made available via NFS. The -alldirs option
specifies that clients will be able to mount at any point under /work as well as /work itself. For
example, if there was a directory called /work/monday, clients could mount /work (and have access
to all files/directories underneath that directory) or they could mount /work/monday and have access
to just the files/directories contained there. The -ro option specifies that clients will only be granted

http://www.openbsd.org/faq/faq6.html (18 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=portmap&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=mountd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=nfsd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=rc.conf.local&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=exports&sektion=5

6 - Networking

read-only access. The last two arguments specify that only clients within the 10.0.0.0 network using a
netmask of 255.255.255.0 will be authorized to mount this filesystem. This is important for some servers
that are accessible by different networks.

Another important security note: don't just add a filesystem to /etc/exports without some kind of list of
allowed host(s). Without a list of hosts which can mount a particular directory, anyone who can reach
your server will be able to mount your NFS exported directories.

Now you can start the server services. You can either reboot (after enabling them as per the instructions
above) or run them manually.

/usr/sbin/portmap
echo -n >/var/db/mountdtab
/sbin/mountd
/sbin/nfsd -tun 4

The arguments passed to nfsd enable TCP (-t) and UDP (-u) connections and enable 4 instances (-n) of
nfsd to run. You should set an appropriate number of NFS server instances to handle the maximum
number of concurrent client requests that you want to service.

You're now ready to mount the exported filesystems from the client(s).

Remember: If you make changes to /etc/exports while NFS is already running, you need to make
mountd aware of this! Just HUP mountd and the changes will take affect.

kill -HUP `cat /var/run/mountd.pid`

Mounting NFS Filesystems

NFS filesystems can be mounted from a client without needing to enable any services or daemons. They
can be mounted just like any other filesystem.

NFS filesystems should be mounted via mount(8), or more specifically, mount_nfs(8). To mount a
filesystem /work on host 10.0.0.1 to local filesystem /mnt, do this (note that you don't need to use an
IP address; mount will resolve host names):

mount -t nfs 10.0.0.1:/work /mnt

To have that filesystem mounted at boot, add something like this to /etc/fstab:

10.0.0.1:/work /mnt nfs rw 0 0

http://www.openbsd.org/faq/faq6.html (19 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=mount_nfs&sektion=8

6 - Networking

It is important that you use 0 0 at the end of this line so that your computer does not try to fsck the NFS
filesystem on boot. The other standard security options, such as noexec, nodev, and nosuid, should
also be used where applicable. For example:

10.0.0.1:/work /mnt nfs rw,nodev,nosuid 0 0

This way, no devices or setuid programs on the NFS server can subvert security measures on the NFS
client. If you are not mounting programs which you expect to run on the NFS client, add noexec to this
list.

When accessing an NFS mount as the root user, the server automatically maps root's access to username
"nobody" and group "nobody". This is important to know when considering file permissions. For
example, take a file with these permissions:

-rw------- 1 root wheel 0 Dec 31 03:00
_daily.B20143

If this file was on an NFS share and the root user tried to access this file from the NFS client, access
would be denied. This is because the server uses the credentials of the user "nobody" when root tries to
access the file. Since the user nobody doesn't have permissions to access the file, access is denied.

The user and group that root are mapped to are configurable via the exports(5) file on the NFS server.

Checking Stats on NFS

One thing to check to ensure NFS is operating properly is that all the daemons have properly registered
with RPC. To do this, use rpcinfo(8).

$ rpcinfo -p 10.0.0.1
 program vers proto port
 100000 2 tcp 111 portmapper
 100000 2 udp 111 portmapper
 100005 1 udp 633 mountd
 100005 3 udp 633 mountd
 100005 1 tcp 916 mountd
 100005 3 tcp 916 mountd
 100003 2 udp 2049 nfs
 100003 3 udp 2049 nfs
 100003 2 tcp 2049 nfs
 100003 3 tcp 2049 nfs

http://www.openbsd.org/faq/faq6.html (20 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=exports&sektion=5

6 - Networking

During normal usage, there are a few other utilities that allow you to see what is happening with NFS.
One is showmount(8), which allows you to view what is currently mounted and who is mounting it.
There is also nfsstat(1) which shows much more verbose statistics. To use showmount(8), try /usr/
bin/showmount -a host. For example:

$ /usr/bin/showmount -a 10.0.0.1
All mount points on 10.0.0.1:
10.0.0.37:/work

This output shows that the client 10.0.0.37 has mounted the /work export being served from the server
at 10.0.0.1.

6.9 - Setting up a network bridge in OpenBSD

A bridge is a link between two or more separate networks. Unlike a router, packets transfer through the
bridge "invisibly" -- logically, the two network segments appear to be one segment to nodes on either
side of the bridge. The bridge will only forward packets that have to pass from one segment to the other,
so among other things, they provide an easy way to reduce traffic in a complex network and yet allow
any node to access any other node when needed.

Note that because of this "invisible" nature, an interface in a bridge may or may not have an IP address
of its own. If it does, the interface has effectively two modes of operation, one as part of a bridge, the
other as a normal, stand-alone NIC. If neither interface has an IP address, the bridge will pass network
data, but will not be externally maintainable (which can be a feature).

An example of a bridge application

One of my computer racks has a number of older systems, none of which have a built-in 10BASE-TX
NIC. While they all have an AUI or AAUI connector, my supply of transceivers is limited to coax. One
of the machines on this rack is an OpenBSD-based terminal server which is always on and connected to
the high-speed network. Adding a second NIC with a coax port will allow me to use this machine as a
bridge to the coax network.

This system has two NICs in it now, an Intel EtherExpress/100 (fxp0) and a 3c590-Combo card (ep0)
for the coax port. fxp0 is the link to the rest of my network and will thus have an IP address, ep0 is
going to be for bridging only and will have no IP address. Machines attached to the coax segment will
communicate as if they were on the rest of my network. So, how do we make this happen?

The file hostname.fxp0 contains the configuration info for the fxp0 card. This machine is set up
using DHCP, so its file looks like this:

http://www.openbsd.org/faq/faq6.html (21 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=showmount&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=nfsstat&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=bridge&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=fxp&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=ep&sektion=4

6 - Networking

$ cat /etc/hostname.fxp0
dhcp NONE NONE NONE

No surprises here.

The ep0 card is a bit different, as you might guess:

$ cat /etc/hostname.ep0
up media 10base2

Here, we are instructing the system to activate this interface using ifconfig(8) and set it to 10BASE-2
(coax). No IP address or similar information needs to be specified for this interface. The options the ep
card accepts are detailed in its man page.

Now, we need to set up the bridge. Bridges are initialized by the existence of a file named something
like bridgename.bridge0. Here is an example for my situation here:

$ cat /etc/bridgename.bridge0
add fxp0
add ep0
up

This is saying set up a bridge consisting of the two NICs, fxp0 and ep0, and activate it. Does it matter
which order the cards are listed? No, remember a bridge is very symmetrical -- packets flow in and out
in both directions.

That's it! Reboot, and you now have a functioning bridge.

Filtering on a bridge

While there are certainly uses for a simple bridge like this, it is likely you might want to DO something
with the packets as they go through your bridge. As you might expect, Packet Filter can be used to
restrict what traffic goes through your bridge.

Keep in mind, by the nature of a bridge, the same data flows through both interfaces, so you only need to
filter on one interface. Your default "Pass all" statements would look something like this:

pass in on ep0 all
pass out on ep0 all
pass in on fxp0 all
pass out on fxp0 all

http://www.openbsd.org/faq/faq6.html (22 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ep&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=bridgename.if&sektion=5

6 - Networking

Now, let's say I wish to filter traffic hitting these old machines, I want only Web and SSH traffic to
reach them. In this case, we are going to let all traffic in and out of the ep0 interface, but filter on the
fxp0 interface, using keep state to handle the reply data:

Pass all traffic through ep0
pass in quick on ep0 all
pass out quick on ep0 all

Block fxp0 traffic
block in on fxp0 all
block out on fxp0 all

pass in quick on fxp0 proto tcp from any to any port {22,
80} \
 flags S/SA keep state

Note that this rule set will prevent anything but incoming HTTP and SSH traffic from reaching either the
bridge machine or any of the other nodes "behind" it. Other results could be had by filtering the other
interface.

To monitor and control the bridge you have created, use the brconfig(8) command, which can also be
used to create a bridge after boot.

Tips on bridging

● It is HIGHLY recommended that you filter on only one interface. While it is possible to filter on
both, you really need to understand this very well to do it right.

● By using the blocknonip option of brconfig(8) or in bridgename.bridge0, you can prevent non-IP
traffic (such as IPX or NETBEUI) from slipping around your filters. This may be important in
some situations, but you should be aware that bridges work for all kinds of traffic, not just IP.

● Bridging requires that the NICs be in a "Promiscuous mode" -- they listen to ALL network
traffic, not just that directed at the interface. This will put a higher load on the processor and bus
than one might expect. Some NICs don't work properly in this mode, the TI ThunderLAN chip (tl
(4)) is an example of a chip that won't work as part of a bridge.

6.10 - How do I boot using PXE? (i386, amd64)

The Preboot Execution Environment, or PXE, is a way to boot a computer from the network, rather than
from a hard disk, a floppy or a CD-ROM. The technology was originally developed by Intel, but is
supported by most major network card and computer manufacturers now. Note that there are several

http://www.openbsd.org/faq/faq6.html (23 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=brconfig&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=brconfig&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=bridgename.if&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=tl&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=tl&sektion=4

6 - Networking

different network boot protocols, PXE is relatively recent. Traditionally, PXE booting is done using
ROMs on the NIC or mainboard of the system, but boot floppies are available from various sources that
will permit PXE booting, as well. Many ROMs on older NICs support network booting but do NOT
support PXE; OpenBSD/i386 or amd64 cannot currently be booted across the network by these.

How does PXE booting work?

First, it is wise to understand how OpenBSD boots on i386 and amd64 platforms. Upon starting the boot
process, the PXE-capable NIC broadcasts a DHCP request over the network. The DHCP server will
assign the adapter an IP address, and gives it the name of a file to be retrieved from a tftp(1) server and
executed. This file then conducts the rest of the boot process. For OpenBSD, the file is pxeboot, which
takes the place of the standard boot(8) file. pxeboot(8) is then able to load and execute a kernel (such as
bsd or bsd.rd) from the same tftp(1) server.

How do I do it?

The first and obvious step is you must have a PXE-boot capable computer or network adapter. Some
documentation will indicate all modern NICs and computers are PXE capable, but this is clearly not true
-- many low cost systems do not include PXE ROMs or use an older network boot protocol. You also
need a properly configured DHCP and TFTP server.

Assuming an OpenBSD machine is the source of the boot files (this is NOT required), your DHCP
server dhcpd.conf file will need to have the following line:

 filename "pxeboot";

to have the DHCP server offer that file to the booting workstation. For example:

 shared-network LOCAL-NET {
 option domain-name "example.com";
 option domain-name-servers 192.168.1.3, 192.168.1.5;

 subnet 192.168.1.0 netmask 255.255.255.0 {
 option routers 192.168.1.1;
 filename "pxeboot";
 range 192.168.1.32 192.168.1.127;
 default-lease-time 86400;
 max-lease-time 90000;
 }
 }

http://www.openbsd.org/faq/faq6.html (24 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=tftp&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=pxeboot&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=dhcpd.conf&sektion=5

6 - Networking

You will also have to activate the tftpd(8) daemon. This is typically done through inetd(8). The standard
OpenBSD install has a sample line in inetd.conf which will do nicely for you:

 #tftp dgram udp wait root /usr/libexec/tftpd tftpd -s /
tftpboot

which simply needs to have the '#' character removed and send inetd(8) a -HUP signal to get it to
reload /etc/inetd.conf. tftpd(8) serves files from a particular directory, in the case of this line,
that directory is /tftpboot, which we will use for this example. Obviously, this directory needs to be
created and populated. Typically, you will have only a few files here for PXE booting:

● pxeboot, the PXE boot loader (serving the same function as boot on a disk-based system).
● bsd.rd, the install kernel or bsd, a customized kernel.
● /etc/boot.conf, a boot configuration file.

Note that /etc/boot.conf is only needed if the kernel you wish to boot from is not named bsd, or
other pxeboot defaults are not as you need them (for example, you wish to use a serial console). You can
test your tftpd(8) server using a tftp(1) client, making sure you can fetch the needed files.

When your DHCP and TFTP servers are running, you are ready to try it. You will have to activate the
PXE boot on your system or network card; consult your system documentation. Once you have it set,
you should see something similar to the following:

 Intel UNDI, PXE-2.0 (build 067)
 Copyright (C) 1997,1998 Intel Corporation

 For Realtek RTL 8139(X) PCI Fast Ethernet Controller v1.00
(990420)

 DHCP MAC ADDR: 00 E0 C5 C8 CF E1
 CLIENT IP: 192.168.1.76 MASK: 255.255.255.0 DHCP IP:
192.168.1.252
 GATEWAY IP: 192.168.1.1
 probing: pc0 com0 com1 apm pxe![2.1] mem[540k 28m a20=on]
 disk: hd0*
 net: mac 00:e0:c5:c8:cf:e1, ip 192.168.1.76, server 192.168.1.252
 >> OpenBSD/i386 PXEBOOT 1.00
 boot>

At this point, you have the standard OpenBSD boot prompt. If you simply type "bsd.rd" here, you
will then fetch the file bsd.rd from the TFTP server.

http://www.openbsd.org/faq/faq6.html (25 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=tftpd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=inetd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=pxeboot&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=boot.conf&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=tftp&sektion=1

6 - Networking

 >> OpenBSD/i386 PXEBOOT 1.00
 boot> bsd.rd
 booting tftp:bsd.rd: 4375152+733120 [58+122112+105468]=0x516d04
 entry point at 0x100120

 Copyright (c) 1982, 1986, 1989, 1991, 1993
 The Regents of the University of California. All rights
reserved.

 Copyright (c) 1995-2008 OpenBSD. All rights reserved. http://
www.OpenBSD.org

 OpenBSD 4.4 (RAMDISK_CD) #857: Tue Aug 12 17:31:49 MDT 2008
 ...

The bsd.rd install kernel will now boot.

Can I boot other kinds of kernels using PXE other than bsd.rd?

Yes, although with the tools currently in OpenBSD, PXE booting is primarily intended for installing the
OS.

6.11 - The Common Address Redundancy Protocol (CARP)

6.11.1 - What is CARP and how does it work?

CARP is a tool to help achieve system redundancy, by having multiple computers creating a single,
virtual network interface between them, so that if any machine fails, another can respond instead, and/or
allowing a degree of load sharing between systems. CARP is an improvement over the Virtual Router
Redundancy Protocol (VRRP) standard. It was developed after VRRP was deemed to be not free enough
because of a possibly-overlapping Cisco patent. For more information on CARP's origins and the legal
issues surrounding VRRP, please visit this page.

To avoid legal conflicts, Ryan McBride (with help from Michael Shalayeff, Marco Pfatschbacher and
Markus Friedl) designed CARP to be fundamentally different. The inclusion of cryptography is the most
prominent change, but still only one of many.

How it works: CARP is a multicast protocol. It groups several physical computers together under one or
more virtual addresses. Of these, one system is the master and responds to all packets destined for the
group, the other systems act as hot spares. No matter what the IP and MAC address of the local physical
interface, packets sent to the CARP address are returned with the CARP information.

http://www.openbsd.org/faq/faq6.html (26 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/lyrics.html#35

6 - Networking

At configurable intervals, the master advertises its operation on IP protocol number 112. If the master
goes offline, the other systems in the CARP group begin to advertise. The host that's able to advertise
most frequently becomes the new master. When the main system comes back up, it becomes a back up
host by default, although if it's more desirable for one host to be master whenever possible (e.g. one host
is a fast Sun Fire V120 and the others are comparatively slow SPARCstation IPCs), you can so
configure them.

While highly redundant and fault-tolerant hardware minimizes the need for CARP, it doesn't erase it.
There's no hardware fault tolerance that's capable of helping if someone knocks out a power cord, or if
your system administrator types reboot in the wrong window. CARP also makes it easier to make the
patch and reboot cycle transparent to users, and easier to test a software or hardware upgrade--if it
doesn't work, you can fall back to your spare until fixed.

There are, however, situations in which CARP won't help. CARP's design does require that the members
of a group be on the same physical subnet with a static IP address, although with the introduction of the
carpdev directive, there is no more need for IP addresses on the physical interfaces. Similarly, services
that require a constant connection to the server (such as SSH or IRC) will not be transparently
transferred to the other system--though in this case, CARP can help with minimizing downtime. CARP
by itself does not synchronize data between applications, this has to be done through "alternative
channels" such as pfsync(4) (for redundant filtering), manually duplicating data between boxes with
rsync, or whatever is appropriate for your application.

6.11.2 - Configuration

CARP's controls are located in two places: sysctl(8) and ifconfig(8). Let's look at the sysctls first.

The first sysctl, net.inet.carp.allow, defines whether the host handles CARP packets at all.
Clearly, this is necessary to use CARP. This sysctl is enabled by default.

The second, net.inet.carp.arpbalance, is used for load balancing. If this feature is enabled,
CARP source-hashes the originating IP of a request. The hash is then used to select a virtual host from
the available pool to handle the request. This is disabled by default.

The third, net.inet.carp.log, logs CARP errors. Disabled by default.

Fourth, net.inet.carp.preempt enables natural selection among CARP hosts. The most fit for
the job (that is to say, able to advertise most frequently) will become master. Disabled by default,
meaning a system that is not a master will not attempt to (re)gain master status.

All these sysctl variables are documented in sysctl(3).

http://www.openbsd.org/faq/faq6.html (27 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=pfsync&sektion=4
http://rsync.samba.org/
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=3

6 - Networking

For the remainder of CARP's configuration, we rely on ifconfig(8). The CARP-specific commands
advbase and advskew deal with the interval between CARP advertisements. The formula (in
seconds) is advskew divided by 256, then added to advbase. advbase can be used to decrease
network traffic or allow longer latency before a backup host takes over; advskew lets you control
which host will be master without much delaying failover (should that be required).

Next, pass sets a password, and vhid sets the virtual host identifier number of the CARP group. You
need to assign a unique number for each CARP group, even if (for load balancing purposes) they share
the same IP address. CARP is limited to 255 groups.

Finally, carpdev specifies which physical interface belongs to this particular CARP group. By default,
whichever interface has an IP address in the same subnet assigned to the CARP interface will be used.

Let's put all these settings together in a basic configuration. Let's say you're deploying two identically
configured Web servers, rachael (192.168.0.5) and pris (192.168.0.6), to replace an older system that
was at 192.168.0.7. The commands:

rachael# ifconfig carp0 create
rachael# ifconfig carp0 vhid 1 pass tyrell carpdev fxp0 \
 192.168.0.7 netmask 255.255.255.0

create the carp0 interface and give it a vhid of 1, a password of tyrell, and the IP address 192.168.0.7
with mask 255.255.255.0. Assign fxp0 as the member interface. To make it permanent across reboots,
you can create an /etc/hostname.carp0 file that looks like this:

inet 192.168.0.7 255.255.255.0 192.168.0.255 vhid 1 pass
tyrell carpdev fxp0

Note that the broadcast address is specified in that line, in addition to the vhid and the password. Failing
to do this is a common cause of errors, as it is needed as a place holder.

Do the same on pris. Whichever system brings the CARP interface up first will be master (assuming that
preempt is disabled; the opposite is true when preempt is enabled).

But let's say you're not deploying from scratch. Rachael was already in place at the address 192.168.0.7.
How do you work around that? Fortunately, CARP can deal with this situation. You simply assign the
address to the CARP interface and leave the physical interface specified by the `carpdev' keyword
without an IP address. However, it tends to be cleaner to have an IP for each system--it makes individual
monitoring and access much simpler.

Let's add another layer of complexity; we want rachael to stay master when possible. There are several

http://www.openbsd.org/faq/faq6.html (28 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8

6 - Networking

reasons we might want this: hardware differences, simple prejudice, "if this system isn't master, there's a
problem," or knowing the default master without doing scripting to parse and email the output of
ifconfig.

On rachael, we'll use the sysctl we created above, then edit /etc/sysctl.conf to make it
permanent.

rachael# sysctl net.inet.carp.preempt=1

We'll do configuration on pris, too:

pris# ifconfig carp0 advskew 100

This slightly delays pris's advertisements, meaning rachael will be master when alive.

Note that if you are using PF on a CARP'd computer, you must pass "proto carp" on all involved
interfaces, with a line similar to:

pass on fxp0 proto carp keep state

6.11.3 - Load balancing

Flash forward a few months. Our company of the previous example has grown to the point where a
single internal Web server is just barely managing the load. What to do? CARP to the rescue. It's time to
try load balancing. Create a new CARP interface and group on rachael:

rachael# ifconfig carp1 create
rachael# ifconfig carp1 vhid 2 advskew 100 pass bryant
carpdev fxp0 \
 192.168.0.7 netmask 255.255.255.0

On pris, we'll create the new group and interface as well, then set the "preempt" sysctl:

pris# ifconfig carp1 create
pris# ifconfig carp1 vhid 2 pass bryant carpdev fxp0 \
 192.168.0.7 netmask 255.255.255.0
pris# sysctl net.inet.carp.preempt=1

Now we have two CARP groups with the same IP address. Each group is skewed toward a different
host, which means rachael will stay master of the original group, but pris will take over the new one.

http://www.openbsd.org/faq/faq6.html (29 of 34)4/29/2009 5:05:12 PM

6 - Networking

All we have to do now is enable the load balancing sysctl we discussed previously on both machines:

sysctl net.inet.carp.arpbalance=1

While these examples are for a two-machine cluster, the same principles apply to more systems. Please
note, however, that it's not expected that you will achieve perfect 50/50 distribution between the two
machines--CARP uses a hash of the originating IP address to determine which system handles the
request, rather than by load.

6.11.4 - More Information on CARP

● carp(4)
● ifconfig(8)
● sysctl(8)
● sysctl(3)
● Firewall Failover with pfsync and CARP by Ryan McBride

6.12 - Using OpenNTPD

Accurate time is important for many computer applications. However, many people have noticed that
their $5 watch can keep better time than their $2000 computer. In addition to knowing what time it is, it
is also often important to synchronize computers so that they all agree on what time it is. For some time,
ntp.org has produced a Network Time Protocol (RFC1305, RFC2030) application, available through
ports, which can be used to synchronize clocks on computers over the Internet. However, it is a
nontrivial program to set up, difficult code to audit, and has a large memory requirement. In short, it fills
an important role for some people, but it is far from a solution for all.

OpenNTPD is an attempt to resolve some of these problems, making a trivial-to-administer, safe and
simple NTP compatible way to have accurate time on your computer. OpenBSD's ntpd(8) is controlled
with an easy to understand configuration file, /etc/ntpd.conf.

Simply activating ntpd(8) through rc.conf.local will result in your computer's clock slowly moving
towards, then keeping itself synchronized to, the pool.ntp.org servers, a collection of publicly available
time servers. Once your clock is accurately set, ntpd will hold it at a high degree of accuracy, however,
if your clock is more than a few minutes off, it is highly recommended that you bring it to close to
accurate initially, as it may take days or weeks to bring a very-off clock to sync. You can do this using
the "-s" option of ntpd(8) or any other way to accurately set your system clock.

6.12.1 - "But OpenNTPD isn't as accurate as the ntp.org daemon!"

http://www.openbsd.org/faq/faq6.html (30 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=carp&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=3
http://www.countersiege.com/doc/pfsync-carp/
http://www.ntp.org/
http://www.ietf.org/rfc/rfc1305.txt
http://www.ietf.org/rfc/rfc2030.txt
http://www.openntpd.org/
http://www.openbsd.org/cgi-bin/man.cgi?query=ntpd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ntpd.conf&sektion=5
http://www.pool.ntp.org/

6 - Networking

That may be true. That is not OpenNTPD's design goal, it is intended to be free, simple, reliable and
secure. If you really need microsecond precision more than the benefits of OpenNTPD, feel free to use
ntp.org's ntpd, as it will remain available through ports and packages. There is no plan or desire to have
OpenNTPD bloated with every imaginable feature.

6.12.2 - "Someone has claimed that OpenNTPD is 'harmful'!"

Some people have not understood the goals of OpenNTPD -- a simple, secure and easy to maintain way
to keep your computer's clock accurate. If accurate time keeping is important, a number of users have
reported better results from OpenNTPD than from ntp.org's ntpd. If security is important, OpenNTPD's
code is much more readable (and thus, auditable) and was written using native OpenBSD function calls
like strlcpy, rather than more portable functions like strcpy, and written to be secure from the beginning,
not "made secure later". If having more people using time synchronization is valuable, OpenNTPD
makes it much easier for larger numbers of people to use it. If this is "harmful", we are all for it.

There are applications where the ntp.org ntpd is more appropriate; however it is felt that for a large
majority of the users, OpenNTPD is more than sufficient.

A more complete response to this by one of the maintainers of OpenNTPD can be read here.

6.12.3 - Why can't my other machines synchronize to OpenNTPD?

ntpd(8) does not listen on any address by default. So in order to use it as a server, you have to
uncomment the "#listen on *" line in /etc/ntpd.conf and restart the ntpd(8) daemon. Of course, if
you wish it to listen on a particular IP address rather than all available addresses and interfaces, replace
the "*" with the desired address.

When you have ntpd(8) listening, it may happen that other machines still can't synchronize to it! A
freshly started ntpd(8) daemon (for example, if you just restarted it after modifying ntpd.conf) refuses to
serve time information to other clients until it adjusts its own clock to a reasonable level of stability first.
When ntpd(8) considers its own time information stable, it announces it by a "clock now synced"
message in /var/log/daemon. Even if the system clock is pretty accurate in the beginning, it can
take up to 10 minutes to get in sync, and hours or days if the clock is not accurately set at the start.

6.13 - What are my wireless networking options?

OpenBSD has support for a number of wireless chipsets:

● acx(4) TI ACX100/ACX111. (NFF) (AP)
● an(4) Aironet Communications 4500/4800.

http://www.openbsd.org/faq/faq6.html (31 of 34)4/29/2009 5:05:12 PM

http://www.openntpd.org/goals.html
http://www.openbsd.org/cgi-bin/man.cgi?query=strlcpy&sektion=3
http://www.openbsd.org/cgi-bin/man.cgi?query=strcpy&sektion=3
http://www.advogato.org/person/dtucker/diary.html?start=52
http://www.openbsd.org/cgi-bin/man.cgi?query=ntpd.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=acx&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=an&sektion=4

6 - Networking

● ath(4) driver for Atheros 802.11a/b/g. (AP)
● atu(4) Atmel AT76C50x USB 802.11b
● atw(4) ADMtek ADM8211.
● awi(4) AMD 802.11 PCnet Mobile.
● bwi(4) Broadcom AirForce 802.11b/g
● cnwi(4) Xircom CreditCard Netwave

● ipw(4) Intel PRO/Wireless 2100 802.11b. (NFF)

● iwi(4) Intel PRO/Wireless 2200BG/2225BG/2915ABG 802.11a/b/g. (NFF)
● iwn(4) Intel WiFi Link 4965/5100/5300 802.11a/b/g/Draft-N wireless.
● malo(4) Marvell Libertas 802.11b/g
● pgt(4) Conexant/Intersil Prism GT Full-MAC 802.11a/b/g

● ral(4) and ural(4) [USB] Ralink Technology RT25x0 802.11a/b/g. (AP)
● ray(4) Raytheon Raylink/WebGear Aviator 802.11FH

● rtw(4) Realtek 8180 802.11b. (AP)

● rum(4) Ralink Technology RT2501USB. (AP)
● run(4) Ralink Technology USB 802.11a/b/g/Draft-N
● uath(4) Atheros USB 802.11a/b/g
● upgt(4) Conexant/Intersil PrismGT SoftMAC USB 802.11b/g

● wi(4) Prism2/2.5/3. (AP)

● wpi(4) Intel PRO/Wireless 3945ABG. (NFF)
● zyd(4) ZyDAS ZD1211/ZD1211B USB 802.11b/g

(AP) indicates card can be used as an access point.
(NFF) indicates chip requires a non-free firmware which can not be included with OpenBSD.

Adapters based on these chips can be used much like any other network adapter to connect an OpenBSD
system to an existing wireless network, configured using the standard ifconfig(8) (please see the manual
pages for precise details). Some of these cards can also be used in the "Host-Based Access Point" mode,
permitting them to be made into the wireless access point for your network as part of your firewall.

Note that in order to use some of these cards, you will need to acquire the firmware files, which the
manufacturers refuse to allow free distribution of, so they can not be included with OpenBSD. When
possible, the man pages linked above include contact information so you can contact the right people at
the manufacturers to let them know what you feel about this, or to let them know what other product you
have purchased instead.

Another option to consider for using your OpenBSD-based firewall to provide wireless access is to use a
conventional NIC and an external bridging Access Point. This has the added advantage of letting you
easily position the antenna where it is most effective, which is often not directly on the back of your

http://www.openbsd.org/faq/faq6.html (32 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ath&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=atu&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=atw&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=awi&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=bwi&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=cnw&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=ipw&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=iwi&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=iwn&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=malo&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=pgt&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=ral&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=ural&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=ray&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=rtw&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=rum&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=run&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=uath&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=upgt&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=wi&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=wpi&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=zyd&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8

6 - Networking

firewall.

6.14 - How can I do equal-cost multipath routing?

Equal-cost multipath routing refers to having multiple routes in the routing table for the same network,
such as the default route, 0.0.0.0/0. When the kernel is doing a route lookup to determine where to send
packets destined to that network, it can choose from any of the equal-cost routes. In most scenarios,
multipath routing is used to provide redundant uplink connections, e.g., redundant connections to the
Internet.

The route(8) command is used to add/change/delete routes in the routing table. The -mpath argument
is used when adding multipath routes.

route add -mpath default 10.130.128.1
route add -mpath default 10.132.0.1

Verify the routes:

netstat -rnf inet | grep default
default 10.130.128.1 UGS 2 134
- fxp1
default 10.132.0.1 UGS 0 172
- fxp2

In this example we can see that one default route points to 10.130.128.1 which is accessible via the fxp1
interface, and the other points to 10.132.0.1 which is accessible via fxp2.

Since the mygate(5) file does not yet support multipath default routes, the above commands should be
added to the bottom of the hostname.if(5) files for the fxp1 and fxp2 interfaces. The /etc/mygate file
should then be deleted.

/etc/hostname.fxp1
!route add -mpath default 10.130.128.1

/etc/hostname.fxp2
!route add -mpath default 10.132.0.1

Lastly, don't forget to activate the use of multipath routes by enabling the proper sysctl(3) variable.

sysctl net.inet.ip.multipath=1
sysctl net.inet6.ip6.multipath=1

http://www.openbsd.org/faq/faq6.html (33 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=route&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=mygate&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=hostname.if&sektion=5

6 - Networking

Be sure to edit sysctl.conf(5) to make the changes permanent.

Now try a traceroute to different destinations. The kernel will load balance the traffic over each
multipath route.

traceroute -n 154.11.0.4
traceroute to 154.11.0.4 (154.11.0.4), 64 hops max, 60 byte
packets
 1 10.130.128.1 19.337 ms 18.194 ms 18.849 ms
 2 154.11.95.170 17.642 ms 18.176 ms 17.731 ms
 3 154.11.5.33 110.486 ms 19.478 ms 100.949 ms
 4 154.11.0.4 32.772 ms 33.534 ms 32.835 ms

traceroute -n 154.11.0.5
traceroute to 154.11.0.5 (154.11.0.5), 64 hops max, 60 byte
packets
 1 10.132.0.1 14.175 ms 14.503 ms 14.58 ms
 2 154.11.95.38 13.664 ms 13.962 ms 13.445 ms
 3 208.38.16.151 13.964 ms 13.347 ms 13.788 ms
 4 154.11.0.5 30.177 ms 30.95 ms 30.593 ms

For more information about how the route is chosen, please refer to RFC2992, "Analysis of an Equal-
Cost Multi-Path Algorithm".

It's worth noting that if an interface used by a multipath route goes down (i.e., loses carrier), the kernel
will still try to forward packets using the route that points to that interface. This traffic will of course be
blackholed and end up going nowhere. It's highly recommended to use ifstated(8) to check for
unavailable interfaces and adjust the routing table accordingly.

[FAQ Index] [To Section 5 - Building the System from Source] [To Section 7 - Keyboard and Display
Controls]

 www@openbsd.org
$OpenBSD: faq6.html,v 1.274 2009/04/07 10:56:27 nick Exp $

http://www.openbsd.org/faq/faq6.html (34 of 34)4/29/2009 5:05:12 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl.conf&sektion=5
http://www.ietf.org/rfc/rfc2992.txt
http://www.openbsd.org/cgi-bin/man.cgi?query=ifstated&sektion=8
mailto:www@openbsd.org

7 - Keyboard and Display Controls

[FAQ Index] [To Section 6 - Networking] [To Section 8 - General Questions]

7 - Keyboard and Display Controls

Table of Contents

● 7.1 - How do I remap the keyboard? (wscons)
● 7.2 - Is there console mouse support in OpenBSD?
● 7.3 - How do I clear the console each time a user logs out?
● 7.4 - Accessing the console scrollback buffer. (amd64, i386, some Alpha)
● 7.5 - How do I switch consoles? (amd64, i386, Zaurus, some Alpha)
● 7.6 - How can I use a console resolution of 80x50? (amd64, i386, some Alpha)
● 7.7 - How do I use a serial console?
● 7.8 - How do I blank my console? (wscons)
● 7.9 - EVERYTHING I TYPE AT THE LOGIN IS IN CAPS!

7.1 - How do I remap the keyboard? (wscons)

The ports that use the wscons(4) console driver: alpha, amd64, hppa, i386, mac68k, macppc, sparc,
sparc64, vax, and zaurus.

With wscons(4) consoles, most options can be controlled using the wsconsctl(8) utility. For example, to
change keymappings with wsconsctl(8) one would execute the following:

wsconsctl -w keyboard.encoding=uk

In the next example, we will remap "Caps Lock" to be "Control L":

wsconsctl -w keyboard.map+="keysym Caps_Lock = Control_L"

7.2 - Is there console mouse support in OpenBSD?

http://www.openbsd.org/faq/faq7.html (1 of 9)4/29/2009 5:05:19 PM

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=wscons&sektion=4
http://www.openbsd.org/alpha.html
http://www.openbsd.org/amd64.html
http://www.openbsd.org/hppa.html
http://www.openbsd.org/i386.html
http://www.openbsd.org/mac68k.html
http://www.openbsd.org/macppc.html
http://www.openbsd.org/sparc.html
http://www.openbsd.org/sparc64.html
http://www.openbsd.org/vax.html
http://www.openbsd.org/zaurus.html
http://www.openbsd.org/cgi-bin/man.cgi?query=wsconsctl&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=wsconsctl&sektion=8

7 - Keyboard and Display Controls

For the alpha, amd64 and i386 platforms, OpenBSD provides wsmoused(8), a port of FreeBSD's moused
(8). It can be enabled automatically at startup by editing the appropriate line in rc.conf(8).

7.3 - Clearing the console each time a user logs out.

To do this you must add a line in /etc/gettytab(5). Change the current section:

P|Pc|Pc console:\
 :np:sp#9600:

adding the line ":cl=\E[H\E[2J:" at the end, so that it ends up looking like this:

P|Pc|Pc console:\
 :np:sp#9600:\
 :cl=\E[H\E[2J:

7.4 - Accessing the Console Scrollback Buffer (amd64, i386,
some Alpha)

On some platforms, OpenBSD provides a console scrollback buffer. This allows you to see information
that has already scrolled past your screen. To move up and down in the buffer, simply use the key
combinations [SHIFT]+[PGUP] and [SHIFT]+[PGDN].

The default scrollback buffer, or the number of pages that you can move up and view, is 8. This is a
feature of the vga(4) driver, so it will not work without a VGA card on any platform (many Alpha
systems have TGA video).

Due to space limitations, the install kernels do not provide the scrollback function. Switching consoles
will clear the scrollback buffer.

7.5 - How do I switch consoles? (amd64, i386, Zaurus, some
Alpha)

On amd64, i386 and Alpha systems with vga(4) cards, OpenBSD provides six virtual terminals by
default, /dev/ttyC0 through /dev/ttyC5. ttyC4 is reserved for use by the X Window system, leaving five
text consoles. You can switch between them using [CTRL]+[ALT]+[F1], [CTRL]+[ALT]+[F2],
[CTRL]+[ALT]+[F3], [CTRL]+[ALT]+[F4] and [CTRL]+[ALT]+[F6].

http://www.openbsd.org/faq/faq7.html (2 of 9)4/29/2009 5:05:19 PM

http://www.openbsd.org/alpha.html
http://www.openbsd.org/amd64.html
http://www.openbsd.org/i386.html
http://www.openbsd.org/cgi-bin/man.cgi?query=wsmoused&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=rc.conf&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=gettytab&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=vga&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=vga&sektion=4

7 - Keyboard and Display Controls

The X environment uses ttyC4, [CTRL]+[ALT]+[F5]. When using X, the [CTRL]+[ALT]+[Fn]
keys will take you to the text screens; [CTRL]+[ALT]+[F5] will take you back to the graphical
environment.

If you wish to have more than the default number of virtual consoles, use the wsconscfg(8) command to
create screens for ttyC6, ttyC7 and above. For example:

wsconscfg -t 80x25 6

will create a virtual terminal for ttyC6, accessed by [CTRL]+[ALT]+[F7]. Don't forget to add this
command to your rc.local(8) file if you want the extra screen the next time you boot the computer.

Note that you will not get a "login:" prompt on the newly-created virtual console unless you set it to
"on" in /etc/ttys(5), and either reboot or send init(8) a HUP signal using kill(1).

On the Zaurus, two virtual terminals (/dev/ttyC0 and /dev/ttyC1) are available by default, accessible
with [ALT]+[CALENDAR] and [ALT]+[ADDRESS] (The [ALT] key is the one right of the left
[CTRL] key).

7.6 - How do I use a console resolution of 80x50? (amd64, i386,
some Alpha)

amd64, i386, and VGA Alpha users normally get a console screen of 25 lines of 80 characters. However,
many VGA video cards are capable of displaying a higher text resolution of 50 lines of 80 characters.

First, a font that supports the desired resolution must be loaded using the wsfontload(8) command. The
standard 80x25 text screen uses 8x16 pixel fonts; to double the number of lines we will have to use 8x8
pixel fonts.

After that, we will have to delete and recreate a virtual console at the desired screen resolution, using the
wsconscfg(8) command.

This can be done automatically at boot by adding the following lines to the end of your rc.local(8)
file:

wsfontload -h 8 -e ibm /usr/share/misc/pcvtfonts/vt220l.808
wsconscfg -dF 5
wsconscfg -t 80x50 5

As with any modification to your system configuration, it is recommended you spend some time with

http://www.openbsd.org/faq/faq7.html (3 of 9)4/29/2009 5:05:19 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=wsconscfg&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=rc.local&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ttys&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=init&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=kill&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=wsfontload&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=wsconscfg&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=rc.local&sektion=8

7 - Keyboard and Display Controls

the man pages to understand what these commands do.

The first line above loads the 8x8 font. The second line deletes screen 5 (which would be accessed by
[CTRL]+[ALT]+[F6]). The third line creates a new screen 5 with 50 lines of 80 characters each. If
you do this, you will see your primary screen, and the other three default virtual consoles, come up in
the standard 80x25 mode, but a new screen 5 at 80x50 accessible through [CTRL]+[ALT]+[F6].

Remember that [CTRL]+[ALT]+[F1] is screen 0 (ttyC0). If you wish to alter other screens, simply
repeat the delete and add screen steps for whichever screens you want running at the 80x50 resolution.

You should avoid changing screen 4 (ttyC4, [CTRL]+[ALT]+[F5]), which is used by X as a
graphical screen. It is also not possible to change the resolution of the primary console device (i.e.,
ttyC0).

As one might expect, all these commands can also be entered at the command prompt, as root, or (better)
using sudo(8).

Note: this will not work on all video cards. Unfortunately, not all video cards support the uploaded
fonts that wscons(4) requires to achieve the 80x50 text mode. In these cases, you might wish to consider
running X.

7.7 - How do I use a serial console?

There are many reasons you may wish to use a serial console for your OpenBSD system:

● Recording console output (for documentation).
● Remote management.
● Easier maintenance of a large quantity of machines
● Providing a useful dmesg from machines which might otherwise be difficult to get one from.
● Providing an accurate "trace" and "ps" output if your system crashes so developers can have a

chance to fix the problem.

OpenBSD supports serial console on most platforms, however details vary greatly between platforms.

Note that serial interfacing is NOT a trivial task -- you will often need unusual cables, and ports are not
standardized between machines, in some cases, not even consistent on one machine. It is assumed you
know how to select the appropriate cable to go between your computer and the device acting as your
serial terminal. A full tutorial on serial interfacing is beyond the scope of this article, however, we offer
one hint: just because the ends plug in doesn't mean it will work.

/etc/ttys change

http://www.openbsd.org/faq/faq7.html (4 of 9)4/29/2009 5:05:19 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=sudo&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=wscons&sektion=4

7 - Keyboard and Display Controls

There are two parts to getting a functional serial console on an OpenBSD system. First, you must have
OpenBSD use your serial port as a console for status and single user mode. This part is very platform
dependent. Second, you must enable the serial port to be used as an interactive terminal, so a user can
log into it when running multi-user. This part is fairly similar between platforms, and is detailed here.

Terminal sessions are controlled by the /etc/ttys file. Before OpenBSD will give you a "login:"
prompt at a device, it has to be enabled in /etc/ttys, after all, there are other uses for a serial port other
than for a terminal. In platforms which typically have an attached keyboard and screen as a console, the
serial terminal is typically disabled by default. We'll use the i386 platform as an example. In this case,
you must edit the line that reads:

 tty00 "/usr/libexec/getty std.9600" unknown off

to read something like:

 tty00 "/usr/libexec/getty std.9600" vt220 on secure

Here, tty00 is the serial port we are using as a console. vt220 is the termcap(5) entry that matches
YOUR terminal (other likely options might include vt100, xterm, etc.). The "on" activates the getty
for that serial port so that a "login:" prompt will be presented, the "secure" permits a root (uid 0)
login at this console (which may or may not be what you desire), and the "9600" is the terminal baud
rate. Resist the urge to crank the baud rate up to the maximum your hardware can support, as you are
more likely to create problems than benefit. Most systems have a "default" speed (supported by default
by the boot ROM and/or the boot loader, often 9600), use this unless you have real reason to use
something different.

Note that you can use a serial console for install without doing this step, as the system is running in
single user mode, and not using getty for login.

On some platforms and some configurations, you must bring the system up in single user mode to make
this change if a serial console is all you have available.

amd64 and i386

To direct the boot process to use the serial port as a console, create or edit your /etc/boot.conf file to
include the line:

 set tty com0

to use the first serial port as your console. The default baud rate is 9600bps, this can be changed with a /

http://www.openbsd.org/faq/faq7.html (5 of 9)4/29/2009 5:05:19 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ttys&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=termcap&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=getty&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=boot.conf&sektion=8&arch=i386

7 - Keyboard and Display Controls

etc/boot.conf line using the stty option. This file is put on your boot drive, which could also be your
install floppy, or the command can be entered at the boot> prompt from the OpenBSD second-stage
boot loader for a one-time (or first time) serial console usage.

amd64 and i386 notes:

● OpenBSD numbers the serial ports starting at tty00, DOS/Windows labels them starting at
COM1. So, keep in mind tty02 is COM3, not COM2

● Some systems may be able to operate without a video card in the machine, but certainly not all --
many systems consider this an error condition. Some machines will even refuse to work easily
without a keyboard attached.

● Some systems are capable of redirecting all BIOS keyboard and screen activity to a serial port
through a configuration option, so the machine can be completely maintained through the serial
port. Your results may vary -- when using this feature, some BIOSs may prevent the bootloader
from seeing the serial port, and thus, the kernel will not be told to use it. Some BIOSs have an
option to "Continue Console Redirection after POST" (Power On Self Test), this should be set to
"OFF", so the boot loader and the kernel can handle their own console. Unfortunately, this
feature is not universal.

● PC compatible computers are not designed to be run from a serial console, unlike some other
platforms. Even those systems that support a serial console usually have it as a BIOS
configuration option -- and should the configuration information get corrupted, you will find the
system looking for a standard monitor and keyboard again. You generally must have some way to
get a monitor and keyboard to your amd64 and i386 systems in an emergency.

● You will need to edit /etc/ttys as above.

SPARC and UltraSPARC

These machines are designed to be completely maintainable with a serial console. Simply remove the
keyboard from the machine, and the system will run serial.

SPARC and UltraSPARC notes

● The serial ports on a SPARC are labeled ttya, ttyb, etc.
● Unlike some other platforms, it is not necessary to make any changes to /etc/ttys to use a serial

console.
● The SPARC/UltraSPARC systems interpret a BREAK signal on the console port to be the same

as a STOP-A command, and kicks the system back to the Forth prompt, stopping any application
and operating system at that point. This is handy when desired, but unfortunately, some serial
terminals at power-down and some RS-232 switching devices send something the computer
interprets as a break signal, halting the machine. Test before you go into production.

● If you have a keyboard and monitor attached, you can still force the serial console to be used
instead by using the following commands at the ok prompt:

http://www.openbsd.org/faq/faq7.html (6 of 9)4/29/2009 5:05:19 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=i386

7 - Keyboard and Display Controls

 ok setenv input-device ttya
 ok setenv output-device ttya
 ok reset

If the keyboard and monitor (ttyC0) are active in /etc/ttys (above), you can use the keyboard and
monitor in X.

MacPPC

The MacPPC machines are configured for a serial console through OpenFirmware. Use the commands:

 ok setenv output-device scca
 ok setenv input-device scca
 ok reset-all

Set your serial console to 57600bps, 8N1.

MacPPC notes

● Unfortunately, serial console is not directly possible on most MacPPCs. While most of these
machines do have serial hardware, it isn't accessible outside the machine. Fortunately, a few
companies offer add-on devices for several Macintosh models which will make this port
available for use as a serial console (or other uses). Use your favorite search engine and look for
"Macintosh internal serial port".

● You will have to change tty00 in /etc/ttys to on and set the speed to 57600 instead of the
default of 9600 as detailed above in single user mode before booting multi-user and having the
serial console functional.

Mac68k

Serial console is selected in the Booter program, under the "Options" pull-down menu, then
"Serial Ports". Check the "Serial Console" button, then choose the Modem or Printer port. You
will need a Macintosh modem or printer cable to attach to the Mac's serial ports. If you wish to have this
as default, tell the Booter program to save your options.

Mac68k Notes

● The modem port is tty00, the printer port is tty01.

http://www.openbsd.org/faq/faq7.html (7 of 9)4/29/2009 5:05:19 PM

7 - Keyboard and Display Controls

● The Mac68k doesn't turn on its serial port until called upon, so your breakout box may not show
any signals on the Mac's serial port until the OpenBSD boot process has started.

● You will have to enable the port (tty00 or tty01) as indicated above.

7.8 - How do I blank my console? (wscons)

If you wish to blank your console after a period of inactivity without using X, you can alter the
following wscons(4) variables:

● display.vblank set to on will disable the vertical sync pulse, which will cause many
monitors to go into an "energy saver" mode. This will require more time to bring the screen back
on, but will reduce energy consumption and heat production of newer monitors. When set to
off, the display will blank, but the monitor will still be receiving the normal horizontal and
vertical sync pulses, so the unblanking will be almost instant.

● display.screen_off determines the blanking time in thousandths of a second, i.e., 60000
would set the timeout to one minute.

● display.kbdact determines if keyboard activity will restore the blanked screen. Usually, this
is desirable.

● display.outact determines if screen output will restore the blanked screen.

You can set these variables at the command line using the wsconsctl(8) command:

 # wsconsctl -w display.screen_off=60000
 display.screen_off -> 60000

or set them permanently by editing /etc/wsconsctl.conf so these changes take place at next boot:

 display.vblank=on # enable vertical sync blank
 display.screen_off=600000 # set screen blank timeout to 10
minutes
 display.kbdact=on # Restore screen on keyboard
input
 display.outact=off # Restore screen on display
output

The blanker is activated when either display.kbdact or display.outact is set to "on".

7.9 - EVERYTHING I TYPE AT THE LOGIN PROMPT IS IN CAPS!

This is a feature, not a bug, actually.

http://www.openbsd.org/faq/faq7.html (8 of 9)4/29/2009 5:05:19 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=wscons&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=wsconsctl&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=wsconsctl.conf&sektion=5

7 - Keyboard and Display Controls

Virtually all Unix commands and user names are entered using all lowercase. However, some very old
terminals were only capable of uppercase characters, making them difficult, if not impossible, to use
with Unix. As a workaround, if you entered your user name in all uppercase, getty(8) would assume
your terminal was "lowercase challenged", and simply interpret everything you type as lowercase, while
echoing it as uppercase. If you have a mixed-case or uppercase password, this will make login
impossible.

Hitting CTRL-D at the login prompt will cause getty(8) to terminate, and init(8) will relaunch a new
one, which will accept uppercase and lowercase properly.

[FAQ Index] [To Section 6 - Networking] [To Section 8 - General Questions]

 www@openbsd.org
$OpenBSD: faq7.html,v 1.78 2008/03/01 11:31:08 steven Exp $

http://www.openbsd.org/faq/faq7.html (9 of 9)4/29/2009 5:05:19 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=getty&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=init&sektion=8
mailto:www@openbsd.org

8 - General Questions

[FAQ Index] [To Section 7 - Keyboard and Display controls] [To Section 9 - Migrating to OpenBSD]

8 - General Questions

Table of Contents

● 8.1 - I forgot my root password..... What do I do now?
● 8.2 - X won't start, I get lots of error messages
● 8.3 - Can I use programming language "L" on OpenBSD?
● 8.4 - What is the ports tree?
● 8.5 - What are packages?
● 8.6 - Should I use Ports or Packages?
● 8.8 - Is there any way to use my floppy drive if it's not attached during boot?
● 8.9 - OpenBSD Bootloader (i386, amd64 specific)
● 8.10 - Using S/Key on your OpenBSD system
● 8.12 - Does OpenBSD support SMP?
● 8.13 - I sometimes get Input/output error when trying to use my tty devices
● 8.14 - What web browsers are available for OpenBSD?
● 8.15 - How do I use the mg editor?
● 8.16 - ksh(1) does not appear to read my .profile!
● 8.17 - Why does my /etc/motd file get written over when I modified it?
● 8.20 - Antialiased and TrueType fonts in X
● 8.21 - Does OpenBSD support any journaling filesystems?
● 8.22 - Reverse DNS or Why is it taking so long for me to log in?
● 8.23 - Why do the OpenBSD web pages not conform to HTML4/XHTML?
● 8.24 - Why is my clock off by twenty-some seconds?
● 8.25 - Why is my clock off by several hours?

8.1 - I forgot my root password, what do I do now?

The basic process to regain root is to boot into single user mode, mount the relevant partitions (/ and /

http://www.openbsd.org/faq/faq8.html (1 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/index.html
http://www.openbsd.org/faq/truetype.html

8 - General Questions

usr), run passwd(1) to change the root password. You can then boot and login normally.

The detailed process:

● Boot into single user mode. This part of the process varies from platform to platform. For
amd64 and i386 platforms, the second stage boot loader, boot(8), pauses for a few seconds to
give you a chance to provide parameters to the kernel. This prompt looks like this:

probing: pc0 com0 com1 apm mem[636k 190M a20=on]
disk: fd0 hd0+
>> OpenBSD/i386 BOOT 3.02
boot>

At this point, enter "boot -s" to bring the system up in single user mode:

boot> boot -s

Most other platforms send parameters to the kernel via the boot ROM.

Of course the problem before this will probably be getting the system to shut down. Most likely,
this will involve hitting the reset button or the power button. While hardly desirable, there usually
isn't any alternative. Don't worry too much, OpenBSD's file system is very robust.

● Mount the partitions. Both "/" and /usr will need to be mounted read-write. Assuming they
are on separate partitions (as they should be), the following will work:

fsck -p / && mount -uw /
fsck -p /usr && mount /usr

● Run passwd(1) to change the root password. As you already have root privileges (from being
in single-user mode), it will not ask you to provide your current password.

● boot into multiuser mode. This can be done by either entering "CTRL-D" to resume the normal
boot process, or by entering the reboot(8) command.

If this is a non-personal machine, you should probably use sudo(8) to give multiple (trusted) people the
ability to execute root commands.

"Wait. That looked too easy! That isn't very secure!" If an attacker has physical access to your
system, they win, regardless of the OS on the computer. There are ways to force the use of a password
on single-user mode (see ttys(5)), or eliminate the pause on i386/amd64 (see boot.conf), but practically
speaking, getting around those tricks is also pretty easy (One way: boot floppy or CDROM, edit or

http://www.openbsd.org/faq/faq8.html (2 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=passwd&sektion=1
http://www.openbsd.org/plat.html
http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=passwd&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=reboot&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=sudo&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ttys&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=boot.conf&sektion=5&arch=i386

8 - General Questions

replace password file). You can try to prevent that, but then someone will pull the hard disk out of your
computer. Making your computer difficult to manage properly isn't real security, and if you don't have
the physical machine secured, you have no real security.

Note: many "remote management" systems give most of the functionality of physical access to the
computer, and that needs to be considered. Don't tell yourself the system is secure if there is a way for an
attacker to grab console, insert a virtual floppy and force a reboot of the machine. They might as well
have physical access to the system. The console management system is likely not as secure as
OpenBSD...

8.2 - X won't start, I get lots of error messages

A common cause for X problems is the machdep.allowaperture sysctl(8) setting. Since this defaults to
being disabled on OpenBSD, this is a fairly likely cause of the problem.

You need to edit /etc/sysctl.conf and set machdep.allowaperture=2 (or 1, depending upon your
platform). This will allow X to access the aperture driver, xf86(4), upon the next reboot. It can not be
made available after boot. This can also be set during install if you answer "Y" when you are asked
whether you expect to run the X Window System.

OpenBSD requires that the aperture driver be activated on alpha, amd64, i386, macppc and sparc64
platforms to control access to the video boards. Other platforms use a safer way to handle the video
system, and do not need this (and do not have it in their kernel). If you do not anticipate using X on your
system, it is recommended that you not enable the aperture driver.

For more information about configuring and using X on your platform, see the /usr/X11R6/README
file on your installed system.

8.3 - Can I use programming language "L" on OpenBSD?

You will find support for many common programming languages either in the base system (more
specifically in the baseXX.tgz and compXX.tgz file sets), or in the packages and ports system. It is
recommended that you install the required file set or package containing the specific compiler you want
to use, instead of building it from source. For some compilers, building from source requires a lot of
system resources and is often unneeded unless you have specific needs or there is no package available.

The following table attempts to give an overview of compilers for different languages, where you can
find them, and whether there are any issues or limitations with them. Some of these are limited to certain
platforms. This can be seen either by examining a search result through the ports tree, and noting what is
mentioned in "Archs", or by inspecting the port's Makefile directly. In the latter case, look for lines
containing ONLY_FOR_ARCHS, NOT_FOR_ARCHS, BROKEN, etc.

http://www.openbsd.org/faq/faq8.html (3 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=xf86&sektion=4

8 - General Questions

Note: For ease of use, this article provides an alphabetical list, without distinguishing between different
categories of programming languages. This is not a comprehensive list of everything that is available or
can be used on OpenBSD. If you feel there are inaccuracies or issues which are not mentioned here, feel
free to report that.

Language Where? Notes

Awk base44.tgz, awk
(1)

lang/gawk GNU awk

C, C++ comp44.tgz, gcc(1) The C/C++ compilers in the base system have been audited and
they have several security enhancements (e.g. ProPolice) enabled
by default. Please see gcc-local(1) for details. They will also emit
warnings when using unsafe functions such as sprintf(), strcpy(),
strcat(), tmpnam(), etc. Note that most platforms use gcc 3.3.5, but
some still use 2.95.3.

C, C++ lang/gcc These compilers have not gone through the security audit and do
not contain security enhancements like those in the base system.
The compilers are renamed egcc, eg++, etc. to avoid confusion
with their counterparts in the base system.

Caml lang/ocaml Objective Caml

COBOL lang/open-cobol

Erlang lang/erlang

Fortran comp44.tgz, g77
(1)

Only Fortran 77 support.

lang/gcc Fortran 95 is also supported by egfortran in gcc 4.0 and above.
This new compiler is available as a subpackage (g95) of gcc.

Haskell lang/ghc

lang/nhc98

Java devel/jdk Sun JDK - only 1.7 as a package; for older version see build
instructions below.

lang/classpath essential core class libraries for Java

lang/kaffe

lang/jikes Fast compiler, works well. This needs a "run-time jar", the
bytecode version of all the standard API.

http://www.openbsd.org/faq/faq8.html (4 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/report.html
http://www.openbsd.org/cgi-bin/man.cgi?query=awk&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=awk&sektion=1
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/gawk/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/man.cgi?query=gcc&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=gcc-local&sektion=1
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/gcc/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/ocaml/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/open-cobol/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/erlang/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/man.cgi?query=g77&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=g77&sektion=1
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/gcc/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/ghc/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/nhc98/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/devel/jdk/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/classpath/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/kaffe/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/jikes/?only_with_tag=OPENBSD_4_4

8 - General Questions

devel/eclipse Large IDE; works with Sun JDK

Lisp lang/clisp

Lua lang/lua Additional Lua libraries and auxiliary utilities are available in the
ports tree.

Perl base44.tgz, perl
(1)

Many Perl modules are available in the ports tree, so search there
first before installing modules from CPAN.

PHP www/php4 Plenty of subpackages are available for different PHP modules.

www/php5

Prolog lang/swi-prolog SWI-Prolog environment.

Python lang/python Other ports are using Python 2.5 by default.

Ruby lang/ruby

Scheme lang/chicken

lang/scheme48

lang/scm

shells/scsh

Smalltalk lang/squeak

Tcl lang/tcl

Building the Sun JDK

Due to Sun's restrictive SCSL license, OpenBSD cannot ship binary packages for the JDK < 1.7.
Starting from 1.7 OpenBSD has a fully GPLv2 licensed port, that can be installed as a package. Users
looking for the browser plugin will still need to build 1.5 or 1.6 from ports until Sun releases the plugin
code. Note that you will need plenty of RAM for this build to succeed.

The JDK ports are in the devel/jdk subdirectory of the ports tree. You can choose among different
versions, each in their own subdirectory. When you just type make, you will see a message asking you
to to fetch the source files manually from Sun's website. Before you can do that, you need to register on
that website, and agree with the license. That's why the ports framework cannot start the download
automatically.

Once you have downloaded the necessary distribution files and patch sets, copy them to the /usr/
ports/distfiles directory. You will also need to have X installed on your system. Start the build
by issuing make in the port's subdirectory.

http://www.openbsd.org/faq/faq8.html (5 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/cgi-bin/cvsweb/ports/devel/eclipse/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/clisp/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/lua/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/man.cgi?query=perl&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=perl&sektion=1
http://www.openbsd.org/cgi-bin/cvsweb/ports/www/php4/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/www/php5/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/swi-prolog/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/python/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/ruby/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/chicken/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/scheme48/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/scm/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/shells/scsh/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/squeak/?only_with_tag=OPENBSD_4_4
http://www.openbsd.org/cgi-bin/cvsweb/ports/lang/tcl/?only_with_tag=OPENBSD_4_4

8 - General Questions

The JDK requires a working Java 2 compiler as a bootstrap to build. For this purpose, since OpenBSD
4.0, the port of JDK 1.5 uses kaffe, which allows JDK 1.5 to be used on both i386 and amd64 platforms,
and reduces the build time considerably.

Older versions of the JDK still require a Linux version of the JDK. Linux emulation on OpenBSD is
restricted to i386 systems, and so these older JDK versions will build only on i386. The ports framework
should take care of installing the necessary files and setting kern.emul.linux=1. For more
information, please read about Linux emulation in the compat_linux(8) manual page, and also FAQ 9 -
Running Linux binaries on OpenBSD. Note that this Linux emulation is only required during the build
of the JDK, which results in a native OpenBSD JDK. You do not need Linux emulation to work with
the native JDK.

After many hours, the build will finish. Just continue with make install to install the JDK.

If you run into errors such as "Could not reserve enough space for object heap", try increasing your
processes' memory limits using the shell's built-in ulimit command, with the -d flag.

Other development tools

Additionally, there are many other development tools available within the base system or as packages or
ports. A few examples:

● Unix shells: ksh and csh in the base system, many others (e.g. zsh, tcsh) in the shells
subdirectory of the ports tree.

● lint(1): a C program verifier, which has been substantially improved from versions before
OpenBSD 3.9. Linted versions of system libraries are also provided.

● "make" utilities: the traditional BSD make(1) program is in the base system, and the ports tree
contains other flavors which are required to compile some software.

● Graphical toolkits: many popular graphical toolkits (e.g. GTK+, Tk, Qt, wxWidgets, ...) have
been ported to OpenBSD. They can be found in the x11 subdirectory of the ports tree.

● Version control systems: GNU CVS as used by the OpenBSD project is in the base system, and
the ports tree contains a few others. Watch for the new OpenCVS which is being developed.

8.4 - What is the ports tree?

Please see FAQ 15, Working with ports.

8.5 - What are packages?

Please see FAQ 15, Package management.

http://www.openbsd.org/faq/faq8.html (6 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=compat_linux&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=lint&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=make&sektion=1
http://www.opencvs.org/

8 - General Questions

8.6 - Should I use Ports or Packages?

Please see FAQ 15.

8.8 - Is there any way to use my floppy drive if it's not attached
during boot?

You need to set the kernel to always assume the floppy is attached, even if not detected during the
hardware probe, by setting the 0x20 flag bit on fdc(4). This can be done by using User Kernel Config or
config(8) to alter your kernel,

config -e -f /bsd
OpenBSD 4.4 (GENERIC) #1021: Tue Aug 12 17:16:55 MDT 2008
 deraadt@i386.openbsd.org:/usr/src/sys/arch/i386/compile/
GENERIC
Enter 'help' for information
ukc> change fd*
254 fd* at fdc0 drive -1 flags 0x0
change [n] y
drive [-1] ? ENTER
flags [0] ? 0x20
254 fd* changed
254 fd* at fdc0 drive -1 flags 0x20
ukc> q
Saving modified kernel.
#

8.9 - OpenBSD Bootloader (i386, amd64 specific)

When booting your OpenBSD system, you have probably noticed the boot prompt.

boot>

For most people, you won't have to do anything here. It will automatically boot if no commands are
given. But sometimes problems arise, or special functions are needed. That's where these options will
come in handy. To start off, you should read through the boot(8) man page. Here we will go over the
most common used commands for the bootloader.

To start off, if no commands are issued, the bootloader will automatically try to boot /bsd. If that fails it

http://www.openbsd.org/faq/faq8.html (7 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=fdc&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=i386

8 - General Questions

will try /obsd, and if that fails, it will try /bsd.old. You can specify a kernel by hand by typing:

boot> boot hd0a:/bsd

or

boot> b /bsd

This will boot the kernel named bsd from the 'a' partition of the first BIOS recognized hard disk.

Here is a brief list of options you can use with the OpenBSD kernel.

● -a : This will allow you to specify an alternate root device after booting the kernel.
● -c : This allows you to enter the boot time configuration. Check the Boot Time Config section of

the FAQ.
● -s : This is the option to boot into single user mode.
● -d : This option is used to dump the kernel into ddb. Keep in mind that you must have DDB built

into the kernel.

These are entered in the format of: boot [image [-acds]]

For further reading you can read boot(8)'s man page.

8.10 - S/Key

S/Key is a ``one-time password'' authentication system. It can be useful for people who don't have the
ability to use an encrypted channel which protects their authentication credentials in transit, as can be
established using ssh(1).

WARNING: One-time password systems only protect authentication information. They do not prevent
network eavesdroppers from gaining access to private information. Furthermore, if you are accessing a
secure system A, it is recommended that you do this from another trusted system B, to ensure nobody is
gaining access to system A by logging your keystrokes or by capturing and/or forging input and output
on your terminal devices.

The S/Key system generates a sequence of one-time (single use) passwords from a user's secret
passphrase along with a challenge received from the server, by means of a secure hash function. The
system is only secure if the secret passphrase is never transferred over the network. Therefore
initializing or changing your secret passphrase MUST be done over a secure channel, such as ssh
(1) or the console.

http://www.openbsd.org/faq/faq8.html (8 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh&sektion=1

8 - General Questions

OpenBSD's S/Key implementation can use a variety of algorithms as the one-way hash function. The
following algorithms are available:

● md4
● md5
● sha1
● rmd160.

Setting up S/Key - The first steps

To start off the directory /etc/skey must exist. If this directory is not in existence, have the super-user
create it. This can be done simply by doing:

skeyinit -E

Once that directory is in existence, you can initialize your S/Key. To do this you must use skeyinit(1).
Since skeyinit(1) will be asking you for your S/Key secret passphrase, you must run this over a secure
channel, as explained above! The program will even remind you of this. With skeyinit(1), you will first
be prompted for your password to the system. This is the same password that you used to log into the
system. Once you have authorized yourself with your system password, you will be asked for your S/
Key secret passphrase. This is NOT your system password. Your secret passphrase must be at least 10
characters. We suggest using a memorable phrase containing several words as the secret passphrase.
Here is an example user being added.

$ skeyinit
Reminder - Only use this method if you are directly
connected
 or have an encrypted channel. If you are using
telnet,
 exit with no password and use skeyinit -s.
Password:
[Adding ericj with md5]
Enter new secret passphrase:
Again secret passphrase:

ID ericj skey is otp-md5 100 oshi45820
Next login password: HAUL BUS JAKE DING HOT HOG

One line of particular importance in here is ID ericj skey is otp-md5 100 oshi45820. This gives a lot of
information to the user. Here is a breakdown of the sections and their importance.

http://www.openbsd.org/faq/faq8.html (9 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=md4&sektion=3
http://www.openbsd.org/cgi-bin/man.cgi?query=md5&sektion=3
http://www.openbsd.org/cgi-bin/man.cgi?query=sha1&sektion=3
http://www.openbsd.org/cgi-bin/man.cgi?query=rmd160&sektion=3
http://www.openbsd.org/cgi-bin/man.cgi?query=skeyinit&sektion=1

8 - General Questions

● otp-md5 - This shows which one-way hash was used to create your One-Time Password (otp).
● 100 - This is your sequence number. This is a number from 100 down to 1. Once it reaches one,

another secret passphrase must be created by running skeyinit(1).
● oshi45820 - This is the key.

But of more immediate importance is your one-time password. Your one-time password consists of 6
small words, combined together this is your one-time password, spaces and all. The one-time password
printed by skeyinit cannot be used to login (there is a usage for this first one-time password, see skeyinit
(1)). To be able to log in, a one-time password corresponding to the challenge printed by the login
process has to be computed using skey(1). The next section will show how to do that.

Actually using S/Key to login.

By now your skey has been initialized. You're ready to login. Here is an example session using S/Key to
login. To perform an S/Key login, you append :skey to your login name.

$ ftp localhost
Connected to localhost.
220 oshibana.shin.ms FTP server (Version 6.5/OpenBSD) ready.
Name (localhost:ericj): ericj:skey
331- otp-md5 96 oshi45820
331 S/Key Password:
230- OpenBSD 4.4 (GENERIC) #1021: Tue Aug 12 17:16:55 MDT
2008
230-
230- Welcome to OpenBSD: The proactively secure Unix-like
operating system.
230-
230- Please use the sendbug(1) utility to report bugs in
the system.
230- Before reporting a bug, please try to reproduce it
with the latest
230- version of the code. With bug reports, please try to
ensure that
230- enough information to reproduce the problem is
enclosed, and if a
230- known fix for it exists, include that as well.
230-
230 User ericj logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> quit

http://www.openbsd.org/faq/faq8.html (10 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=skeyinit&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=skeyinit&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=skeyinit&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=skey&sektion=1

8 - General Questions

221 Goodbye.

Note that I appended ":skey" to my username. This tells ftpd that I want to authenticate using S/Key.
Some of you might have noticed that my sequence number has changed to otp-md5 96 oshi45820. This
is because by now I have used S/Key to login several times. But how do you get your one-time
password? Well, to compute the one-time password, you'll need to know what sequence number you're
using and your key. As you're probably thinking, how can you remember which sequence number you're
on?

When you are logging in, the login process prints a line containing the needed information, which you
can use to generate a one-time password on the spot using another trusted computer accesses by a secure
channel, by copy-pasting the line into a command shell:

otp-md5 96 oshi45820

After typing your passphrase, your one-time password will be printed, which you can then copy-paste to
the S/Key Password prompt to log in. Not only is otp-md5 a description of the hash used, it is also an
alternate name for the skey(1) command.

If you already are logged in and want to generate a one-time password for the next login, use skeyinfo
(1), it will tell you what to use for the next login. For example here, I need to generate another one-time
password for a login that I might have to make in the future. (remember I'm doing this from a secure
channel).

$ skeyinfo
95 oshi45820

An even better way is to use skeyinfo -v, which outputs a command suitable to be run in the shell. For
instance:

$ skeyinfo -v
otp-md5 95 oshi45820

So, the simplest way to generate the next S/Key password is just:

$ `skeyinfo -v`
Reminder - Do not use this program while logged in via
telnet.
Enter secret passphrase:
NOOK CHUB HOYT SAC DOLE FUME

http://www.openbsd.org/faq/faq8.html (11 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=skey&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=skeyinfo&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=skeyinfo&sektion=1

8 - General Questions

Note the backticks in the above example.

I'm sure many of you won't always have a secure connection or a trusted local computer to create these
passwords, and creating them over an insecure connection isn't feasible, so how can you create multiple
passwords at one time? You can supply skey(1) with a number of how many passwords you want
created. This can then be printed out and taken with you wherever you go.

$ otp-md5 -n 5 95 oshi45820
Reminder - Do not use this program while logged in via
telnet.
Enter secret passphrase:
91: SHIM SET LEST HANS SMUG BOOT
92: SUE ARTY YAW SEED KURD BAND
93: JOEY SOOT PHI KYLE CURT REEK
94: WIRE BOGY MESS JUDE RUNT ADD
95: NOOK CHUB HOYT SAC DOLE FUME

Notice here though, that the bottom password should be the first used, because we are counting down
from 100.

Using S/Key with ssh(1) and telnet(1)

Using S/Key with ssh(1) or telnet(1) is done in pretty much the same fashion as with ftp--you simply
tack ":skey" to the end of your username. Example:

$ ssh -l ericj:skey localhost
otp-md5 98 oshi45821
S/Key Password: SCAN OLGA BING PUB REEL COCA
Last login: Thu Apr 7 12:21:48 on ttyp1 from 156.63.248.77
OpenBSD 4.4 (GENERIC) #1021: Tue Aug 12 17:16:55 MDT 2008

Welcome to OpenBSD: The proactively secure Unix-like
operating system.

Please use the sendbug(1) utility to report bugs in the
system.
Before reporting a bug, please try to reproduce it with the
latest
version of the code. With bug reports, please try to
ensure that
enough information to reproduce the problem is enclosed,
and if a

http://www.openbsd.org/faq/faq8.html (12 of 20)4/29/2009 5:05:23 PM

8 - General Questions

known fix for it exists, include that as well.

You have mail.
$

8.12 - Does OpenBSD support SMP?
(Symmetric Multi-Processor)

SMP is supported on the OpenBSD/i386, OpenBSD/amd64, OpenBSD/mvme88k, and OpenBSD/
sparc64 (including the UltraSPARC T1 processors) platforms.

A separate SMP kernel, "bsd.mp", is provided with the install file sets, which can be selected at install
time. It is suggested that you test booting this kernel before renaming it to "bsd" to make it your default
kernel.

It is hoped that other SMP-capable platforms will be supported in the future. On most other platforms,
OpenBSD will run on an SMP system, but only utilizing one processor. The exception to this is the
SPARC platform -- OpenBSD/sparc will sometimes require that extra MBus modules be removed for
the system to boot.

8.13 - I get Input/output error when trying to use my tty devices

You need to use /dev/cuaXX for connections initiated from the OpenBSD system, the /dev/ttyXX
devices are intended only for terminal or dial-in usage. While it was possible to use the tty devices in the
past, the OpenBSD kernel is no longer compatible with this usage.

From cua(4):

For hardware terminal ports, dial-out is supported through matching device nodes called calling units.
For instance, the terminal called /dev/tty03 would have a matching calling unit called /dev/cua03. These
two devices are normally differentiated by creating the calling unit device node with a minor number
128 greater than the dial-in device node. Whereas the dial-in device (the tty) normally requires a
hardware signal to indicate to the system that it is active, the dial-out device (the cua) does not, and
hence can communicate unimpeded with a device such as a modem. This means that a process like getty
(8) will wait on a dial-in device until a connection is established. Meanwhile, a dial-out connection can
be established on the dial-out device (for the very same hardware terminal port) without disturbing
anything else on the system. The getty(8) process does not even notice that anything is happening on the
terminal port. If a connecting call comes in after the dial-out connection has finished, the getty(8)
process will deal with it properly, without having noticed the intervening dial-out action.

http://www.openbsd.org/faq/faq8.html (13 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/i386.html
http://www.openbsd.org/amd64.html
http://www.openbsd.org/mvme88k.html
http://www.openbsd.org/sparc64.html
http://www.openbsd.org/sparc64.html
http://www.openbsd.org/sparc.html
http://www.openbsd.org/cgi-bin/man.cgi?query=cua&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=getty&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=getty&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=getty&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=getty&sektion=8

8 - General Questions

8.14 - What web browsers are available for OpenBSD?

Lynx, a text-based browser, is in the base system, and has SSL support. Other browsers in the ports tree,
include (in no particular order):

Graphical (X) Browsers

● Konqueror Installed as part of the KDE desktop environment.
● Konqueror-embedded (konq-e) Konqueror, using only the KDE libraries rather than all of KDE.
● Links+ Another fast and small graphical browser. (Also has a text-only mode)
● Firefox and SeaMonkey Feature-filled browsers. SeaMonkey includes many non-browser

features (mail client, IRC client, etc.), Firefox is just a browser, based on Mozilla. They work on
many architectures.

● Minimo, a lightweight Firefox browser intended for handheld systems.
● Opera Commercial browser, i386 only (requires Linux emulation).
● Amaya The W3C's browser and editor.
● Kazehakase, a lightweight browser able to use either the WebKit or Gecko rendering engines.
● Midori, a WebKit-based browser from the Xfce project.

Console (Text mode) Browsers

● elinks Feature-rich, can render both frames and tables, highly customizable.
● w3m Has table and frame support (also has a graphical mode).
● links Has table support.

You will find all these in the packages collection. All the above mentioned browsers are located in /
usr/ports/www/ after the installation of the ports tree. Most are also available as pre-compiled
packages, available on the FTP servers and on the CD-ROM. As most of the graphical browsers are very
large and require quite some time to download and compile, one should seriously consider the use of
packages where available.

8.15 - How do I use the mg editor?

Mg is a micro Emacs-style text editor included in OpenBSD. Micro means that it's small (Emacs is very
large!) For the basics, read the mg(1) manual page and the tutorial, as included with the source code.

Note that since mg is a small Emacs implementation, which is mostly similar to the text editor features
of Emacs 17, it does not implement many of Emacs' other functionality. (Including mail and news
functionality, as well as modes for Lisp, C++, Lex, Awk, Java, etc...)

http://www.openbsd.org/faq/faq8.html (14 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=lynx&sektion=1
http://www.konqueror.org/
http://www.kde.org/
http://www.konqueror.org/embedded.html
http://links.twibright.com/
http://www.mozilla.org/products/firefox/
http://www.mozilla.org/projects/seamonkey/
http://www-archive.mozilla.org/projects/minimo/
http://www.opera.com/
http://www.w3.org/Amaya/
http://kazehakase.sourceforge.jp/
http://www.twotoasts.de/index.php?/pages/midori_summary.html
http://elinks.cz/
http://www.w3m.org/
http://artax.karlin.mff.cuni.cz/~mikulas/links/
http://www.openbsd.org/ftp.html
http://www.openbsd.org/orders.html
http://www.openbsd.org/cgi-bin/man.cgi?query=mg&sektion=1
http://www.openbsd.org/cgi-bin/cvsweb/src/usr.bin/mg/tutorial?rev=1.5

8 - General Questions

8.16 - ksh(1) does not appear to read my .profile!

There are two likely reasons for ksh(1) to seemingly ignore a user's .profile file.

● .profile is not owned by the user. To fix for username,

chown username ~username/.profile

● You are using ksh(1) from within X Window System

Under xterm(1), argv[0] for ksh(1) is not prepended with a dash ("-"). Prepending a dash to argv
[0] will cause csh(1) and ksh(1) to know they should interpret their login files. (For csh(1) that's .
login, with a separate .cshrc that is always run when csh(1) starts up. With ksh(1), this is
more noticeable because there is only one startup script, .profile. This file is ignored unless
the shell is a login shell.)

To fix this, add the line "XTerm*loginShell: true" to the file .Xdefaults in your
home directory. Note, this file does not exist by default, you may have to create it.

$ echo "XTerm*loginShell: true" >> ~/.Xdefaults

You may not have had to do this on other systems, as some installations of X Window System
come with this setting as default. OpenBSD has chosen to follow the X.org behavior.

8.17 - Why does my /etc/motd file get overwritten when I
modified it?

The /etc/motd file is edited upon every boot of the system, replacing everything up to, but not
including, the first blank line with the system's kernel version information. When editing this file, make
sure that you start after this blank line, to keep /etc/rc from deleting these lines when it edits /etc/
motd upon boot.

8.20 - Antialiased and TrueType fonts in X

See this document.

8.21 - Does OpenBSD support any journaling filesystems?

http://www.openbsd.org/faq/faq8.html (15 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ksh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=xterm&sektion=1
http://www.openbsd.org/faq/truetype.html

8 - General Questions

No it doesn't. We use a different mechanism to achieve similar results called Soft Updates. Please read
FAQ 14 - Soft Updates to get more details.

8.22 - Reverse DNS
 - or -

Why is it taking so long for me to log in?

Many new users to OpenBSD experience a two minute login delay when using services such as ssh, ftp,
or telnet. This can also be experienced when using a proxy, such as ftp-proxy, or when sending mail out
from a workstation through sendmail.

This is almost always due to a reverse-DNS problem. DNS is Domain Name Services, the system the
Internet uses to convert a name, such as "www.openbsd.org" into a numeric IP address. Another task of
DNS is the ability to take a numeric address and convert it back to a "name", this is "Reverse DNS".

In order to provide better logging, OpenBSD performs a reverse-DNS lookup on any machine that
attaches to it in many different ways, including ssh, ftp, telnet, sendmail or ftp-proxy. Unfortunately, in
some cases, the machine that is making the connection does not have a proper reverse DNS entry.

An example of this situation:

A user sets up an OpenBSD box as a firewall and gateway to their internal home network, mapping all
their internal computers to one external IP using NAT. They may also use it as an outbound mail relay.
They follow the installation guidelines, and are very happy with the results, except for one thing -- every
time they try to attach to the box in any way, they end up with a two minute delay before things happen.

What is going on:

From a workstation behind the NAT of the gateway with an unregistered IP address of 192.168.1.35, the
user uses ssh to access the gateway system. The ssh client prompts for username and password, and
sends them to the gateway box. The gateway then tries to figure out who is trying to log in by
performing a reverse DNS lookup of 192.168.1.35. The problem is 192.168.0.0 addresses are for private
use, so a properly configured DNS server outside your network knows it should have no information
about those addresses. Some will quickly return an error message, in these cases, OpenBSD will assume
there is no more information to be gained, and it will quickly give up and just admit the user. Other DNS
servers will not return ANY response. In this case you will find yourself waiting for the OpenBSD name
resolver to time out, which takes about two minutes before the login will be permitted to continue. In the
case of ftp-proxy, some ftp clients will timeout before the reverse DNS query times out, leading to the
impression that ftp-proxy isn't working.

http://www.openbsd.org/faq/faq8.html (16 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ssh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ftp&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=telnet&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ftp-proxy&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=sendmail&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ftp&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=telnet&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=sendmail&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ftp-proxy&sektion=8
http://www.openbsd.org/faq/pf/nat.html
http://www.geektools.com/rfc/rfc1918.txt
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ftp-proxy&sektion=8

8 - General Questions

This can be quite annoying. Fortunately, it is an easy thing to fix.

Fix, using /etc/hosts:

The simplest fix is to populate your /etc/hosts file with all the workstations you have in your
internal network, and ensure that your /etc/resolv.conf file contains the line lookup file
bind which ensures that the resolver knows to start with the /etc/hosts file, and failing that, to use
the DNS servers specified by the "nameserver" lines in your /etc/resolv.conf file.

Your /etc/hosts file will look something like this:

::1 localhost.in.example.org localhost
127.0.0.1 localhost.in.example.org localhost
192.168.1.1 gw.in.example.org gw
192.168.1.20 scrappy.in.example.org scrappy
192.168.1.35 shadow.in.example.org shadow

Your resolv.conf file will look something like this:

search in.example.org
nameserver 24.2.68.33
nameserver 24.2.68.34
lookup file bind

A common objection to this is "But, I use DHCP for my internal network! How can I configure my /
etc/hosts?" Rather easily, actually. Just enter lines for all the addresses your DHCP server is going
to give out, plus any static devices:

http://www.openbsd.org/faq/faq8.html (17 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=hosts&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=resolv.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=hosts&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=resolv.conf&sektion=5

8 - General Questions

::1 localhost.in.example.org localhost
127.0.0.1 localhost.in.example.org localhost
192.168.1.1 gw.in.example.org gw
192.168.1.20 scrappy.in.example.org scrappy
192.168.1.35 shadow.in.example.org shadow
192.168.1.100 d100.in.example.org d100
192.168.1.101 d101.in.example.org d101
192.168.1.102 d102.in.example.org d102
 [... snip ...]
192.168.1.198 d198.in.example.org d198
192.168.1.199 d199.in.example.org d199

In this case, I am assuming you have the DHCP range set to 192.168.1.100 through 192.168.1.199, plus
the three static definitions as listed at the top of the file.

If your gateway must use DHCP for configuration, you may well find you have a problem -- dhclient
will overwrite your /etc/resolv.conf every time the lease is renewed, which will remove the
"lookup file bind" line. This can be solved by putting the line "lookup file bind" in the file /etc/
resolv.conf.tail.

Fix, using a local DNS server

Details on this are somewhat beyond the scope of this document, but the basic trick is to setup your
favorite DNS server, and make sure it knows it is authoritative for both forward and reverse DNS
resolution for all nodes in your network, and make sure your computers (including your gateway) know
to use it as a DNS server.

8.23 - Why do the OpenBSD web pages not conform to HTML4/
XHTML?

The present web pages have been carefully crafted to work on a wide variety of actual browsers going
back to browser versions 4.0 and later. We do not want to make these older pages conform to HTML4 or
XHTML until we're sure that they will also work with older browsers; it's just not a priority. We
welcome new contributors, but suggest you work on writing code, or on documenting new aspects of the
system, not on tweaking the existing web pages to conform to newer standards.

8.24 - Why is my clock off by twenty-some seconds?

When using rdate(8) to synchronize your clock to a NTP server, you may find your clock is off by

http://www.openbsd.org/faq/faq8.html (18 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=dhclient&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=rdate&sektion=8

8 - General Questions

twenty-some seconds from your local definition of time.

This is caused by a difference between the UTC (Coordinated Universal Time, based on astronomical
observations) time and TAI (International Atomic Time, based on atomic clocks) time. To compensate
for variations in the earth's rotation, "leap seconds" are inserted into UTC, but TAI is unadjusted. These
leap seconds are the cause of this discrepancy. For a more detailed description, search the web for
"leap seconds UTC TAI".

Addressing the problem is fairly simple. In most countries you will get the correct time if you use the "-
c" parameter to rdate(8) and use a time zone out of the directory /usr/share/zoneinfo/right/.
For example, if you are located in Germany, you could use these commands:

 # cd /etc && ln -sf /usr/share/zoneinfo/right/CET localtime
 # rdate -ncv ptbtime1.ptb.de

In other countries, the rules may differ.

8.25 - Why is my clock off by several hours?

By default, OpenBSD assumes your hardware clock set to UTC (Universal Coordinated Time) rather
than local time, assumed by some other operating systems, which can cause problems when multi-
booting.

Many other operating systems, can be configured to do the same, which avoids this problem altogether.

If having the hardware clock set to UTC is a problem, you can change the default behavior of OpenBSD
using config(8). For example, to configure OpenBSD to use a hardware clock set to US/Eastern (5 hours
behind UTC, so 300 minutes):

config -ef /bsd
OpenBSD 4.4 (GENERIC) #1021: Tue Aug 12 17:16:55 MDT 2008
 deraadt@i386.openbsd.org:/usr/src/sys/arch/i386/compile/
GENERIC
Enter 'help' for information
ukc> timezone 300
timezone = 300, dst = 0
ukc> quit
Saving modified kernel.

See options(4) and search for option "TIMEZONE=value" for more information.

http://www.openbsd.org/faq/faq8.html (19 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=rdate&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=options&sektion=4

8 - General Questions

Normally, the time zone is set during install. If you have need to change the time zone, you can create a
new symbolic link to the appropriate time zone file in /usr/share/zoneinfo. For example, to set
the machine to use EST5EDT as the new local time zone:

ln -fs /usr/share/zoneinfo/EST5EDT /etc/localtime

See also:

● date(1)
● "Why is my clock off by twenty-some seconds?"
● OpenBSD's NTPD

[FAQ Index] [To Section 7 - Keyboard and Display Controls] [To Section 9 - Migrating to OpenBSD]

 www@openbsd.org
$OpenBSD: faq8.html,v 1.212 2009/04/02 15:30:28 sthen Exp $

http://www.openbsd.org/faq/faq8.html (20 of 20)4/29/2009 5:05:23 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=date&sektion=1
mailto:www@openbsd.org

9 - Migrating to OpenBSD

[FAQ Index] [To Section 8 - General Questions] [To Section 10 - System Management]

9 - Migrating to OpenBSD

Table of Contents

● 9.1 - Tips for users of other Unix-like Operating Systems
● 9.2 - Dual boot of Linux and OpenBSD
● 9.3 - Converting your Linux (or other Sixth Edition-style) password file to BSD-style.
● 9.4 - Running Linux binaries on OpenBSD
● 9.5 - Accessing your Linux files from OpenBSD

For more information for Linux users, please refer to http://sites.inka.de/mips/unix/bsdlinux.html.

9.1 - Tips for users of other Unix-like Operating Systems

While OpenBSD is a very traditional Unix-like operating system and will be very familiar to those who
have used other Unix-like systems, there are important differences. New users to OpenBSD must look at
their own experience: if your only knowledge of Unix is some experience with one variant of Linux, you
may find OpenBSD "strange". Rest assured, Linux looks pretty strange to anyone who starts from
OpenBSD. You must recognize the difference between "standard" and your experience.

If you learned Unix from any of the good books on general Unix, understanding the "Unix philosophy"
and then extended your knowledge to a particular platform, you will find OpenBSD to be a very "true"
and familiar Unix. If you learned Unix using a "type this to do that" process or a book such as "Learn
PinkBeenie v8.3 in 31.4 Hours", and told yourself you "know Unix", you will most likely find
OpenBSD very different.

One important difference between OpenBSD and many other operating systems is the documentation.
OpenBSD developers take great pride in the system man pages. The man pages are the authoritative
source of OpenBSD documentation -- not this FAQ, not third-party independently maintained pages, not
"HOWTO"s, etc. When a developer makes a change to the system, they are expected to update the man
pages along with their change to the system code, not "later" or "when they get around to it" or "when

http://www.openbsd.org/faq/faq9.html (1 of 5)4/29/2009 5:05:25 PM

http://www.openbsd.org/index.html
http://sites.inka.de/mips/unix/bsdlinux.html
http://www.openbsd.org/books.html
http://www.openbsd.org/cgi-bin/man.cgi

9 - Migrating to OpenBSD

someone complains". A manual page exists for virtually every program, utility, driver, configuration
file, and so on on the stock system. It is expected that a user will check the man pages before asking for
help on the mail lists.

Here are some of the commonly encountered differences between OpenBSD and other Unix variants.

● OpenBSD is a fairly pure "BSD-Style" Unix, following the 4.4BSD design closely. Linux and
SCO Unix are "System V" style systems. Some Unix-like operating systems (including some
Linux distributions) mix many SysV and BSD characteristics. A common place where this causes
confusion is the startup scripts, OpenBSD uses the traditional BSD4.4-style rc(8) style.

● OpenBSD is a complete system, intended to be kept in sync. It is not a "Kernel plus utilities" that
can be upgraded separately from each other. Failure to keep your system (kernel, user utilities,
and applications) in sync will result in bad things happening.

● As many applications are not developed to directly compile and run on an OpenBSD
environment, OpenBSD has a ports tree, a system where users can easily acquire code, patch it
for OpenBSD, install dependencies, compile it, install and remove it in a standardized and
maintainable way. Pre-compiled packages are created and distributed by the OpenBSD ports
team. Users are encouraged to use these packages over compiling their own.

● OpenBSD uses CVS to keep track of source code changes. OpenBSD pioneered anonymous
CVS, which allows anyone to extract the full source tree for any version of OpenBSD (from 2.0
to current, and all revisions of all files in between) at any time, and you can access the most
recent changes within hours of its commit. There is also a very convenient and easy to use web
interface to CVS.

● OpenBSD produces an official release available on CD and FTP every six months on a
predefined schedule. Snapshots for all supported platforms are made semi-regularly with the
current development code. It is the goal that the source tree is kept fully buildable and the
resultant system usable at all times. The tree is occasionally broken, but this is an extraordinary
event that will be corrected rapidly, not something that will be permitted to continue.

● OpenBSD contains strong cryptography, which can not be included with OSs based in some
countries.

● OpenBSD has gone through heavy and continual security auditing to ensure the quality (and thus,
security) of the code.

● OpenBSD's kernel is /bsd.
● The names of hard disks are usually /dev/wd (IDE) and /dev/sd (SCSI or devices emulating

SCSI disks).
● /sbin/route with no arguments in Linux gives the state of all the active routes, under OpenBSD

(and many other OSs), you need the "show" parameter, or do a "netstat -r".
● OpenBSD does NOT support Journaling Filesystems like ReiserFS, IBM's JFS or SGI's XFS.

Instead we use the Soft Updates feature of the already very robust Unix Fast File System (FFS) to
accomplish the goals of performance and stability.

● OpenBSD comes with Packet Filter (PF), not ipfw, ipchains, netfilter, iptables, or ipf. This means

http://www.openbsd.org/faq/faq9.html (2 of 5)4/29/2009 5:05:25 PM

http://www.openbsd.org/mail.html
http://www.openbsd.org/cgi-bin/man.cgi?query=rc&sektion=8
http://www.openbsd.org/anoncvs.html
http://www.openbsd.org/anoncvs.html
http://www.openbsd.org/cgi-bin/cvsweb/
http://www.openbsd.org/cgi-bin/cvsweb/
http://www.openbsd.org/orders.html
http://www.openbsd.org/ftp.html
http://www.openbsd.org/crypto.html
http://www.openbsd.org/cgi-bin/man.cgi?query=route&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=netstat&sektion=1
http://www.openbsd.org/faq/pf/index.html

9 - Migrating to OpenBSD

that Network Address Translation (known as IP-Masquerading in Linux), queuing, and filtering
is done through pfctl(8), pf(4), and pf.conf(5). See the PF User's Guide for detailed configuration
information.

● Interface address is stored in /etc/hostname.<interfacename> (for example, /etc/hostname.
dc0 for a NIC using the dc(4) driver). It can contain hostname (resolved in /etc/hosts) instead of
an IP address.

● The machine name is in /etc/myname.
● The default gateway is in /etc/mygate.
● OpenBSD's default shell is /bin/ksh, which is pdksh, the Public Domain Korn shell. Other

included shells are csh and sh. Shells such as bash and tcsh can be added as packages or installed
from ports. Users familiar with bash are encouraged to try ksh(1) before loading bash on their
system -- it does what most people desire of bash.

● Password management on OpenBSD is different from password management on some other
Unix-like operating systems. The actual passwords are stored in the file master.passwd(5) which
is readable only by root. This file should be altered only with the vipw program.

● Devices are named by driver, not by type. For example, there are no eth* devices. It would be
ne0 for an NE2000 Ethernet card, and xl0 for a 3Com Etherlink XL or a Fast Etherlink XL
Ethernet device, etc. All of these drivers have man pages in section 4. So, to find more
information about the messages your 3c905 driver is putting out, you can do "man 4 xl".

● OpenBSD/i386, amd64, and several other platforms use a "two layer" disk partitioning system,
where the first layer is the fdisk, BIOS-visible partition, familiar to most users of IBM
compatible computers. The second layer is the disklabel, a traditional BSD partitioning system.
OpenBSD supports up to 15 disklabel partitions on a disk, all residing within one fdisk partition.
This permits OpenBSD to coexist with other OSs, including other Unix-like OSs. OpenBSD must
be one of the four "primary" partitions.

● Some other OSs encourage you to customize your kernel for your machine. OpenBSD users are
encouraged to simply use the standard GENERIC kernel provided and tested by the developers.
Users attempting to "customize" or "optimize" their kernel usually cause far more problems than
they solve, and will not be supported by developers.

● OpenBSD works hard to maintain the license policy and security of the project. For this reason,
some newer versions of some software which fail to meet either the license or security goals of
the project have not and may never be integrated into OpenBSD. Security and free licensing will
never take a back seat to having the biggest version number.

9.2 - Dual booting Linux and OpenBSD

Yes! It is possible!

Read INSTALL.linux.

http://www.openbsd.org/faq/faq9.html (3 of 5)4/29/2009 5:05:25 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5
http://www.openbsd.org/faq/pf/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=hostname.if&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=dc&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=hosts&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=myname&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=mygate&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=ksh&sektion=1
http://web.cs.mun.ca/~michael/pdksh/
http://www.openbsd.org/cgi-bin/man.cgi?query=csh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=sh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=master.passwd&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=vipw&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=xl&sektion=4
http://www.openbsd.org/policy.html
http://www.openbsd.org/security.html
ftp://ftp.openbsd.org/pub/OpenBSD/4.4/i386/INSTALL.linux

9 - Migrating to OpenBSD

9.3 - Converting your Linux (or other Sixth Edition-style)
password file to BSD-style

First, figure out if your Linux password file is shadowed or not. If it is, install John the Ripper from
packages or ports (security/john) and use the unshadow utility that comes with it to merge your
passwd and shadow files into one Sixth Edition-style file.

Using your Linux password file, we'll call it linux_passwd, you need to add in ::0:0 between fields
four and seven. awk(1) does this for you.

cat linux_passwd | awk -F : '{printf("%s:%s:%s:%s::0:0:%s:
%s:%s\n", \
> $1,$2,$3,$4,$5,$6,$7); }' > new_passwd

At this point, you want to edit the new_passwd file and remove the root and other system entries that
are already present in your OpenBSD password file or aren't applicable with OpenBSD (all of them).
Also, make sure there are no duplicate usernames or user IDs between new_passwd and your
OpenBSD box's /etc/passwd. The easiest way to do this is to start with a fresh /etc/passwd.

cat new_passwd >> /etc/master.passwd
pwd_mkdb -p /etc/master.passwd

The last step, pwd_mkdb is necessary to rebuild the /etc/spwd.db and /etc/pwd.db files. It also creates a
Sixth Edition-style password file (minus encrypted passwords) at /etc/passwd for programs which use it.
OpenBSD uses a stronger encryption for passwords, blowfish, which is very unlikely to be found on any
system which uses full Sixth Edition-style password files. To switch over to this stronger encryption,
simply have the users run 'passwd' and change their password. The new password they enter will be
encrypted with your default setting (usually blowfish unless you've edited /etc/login.conf). Or, as root,
you can run passwd username.

9.4 - Running Linux binaries on OpenBSD

OpenBSD/i386 is able to run Linux binaries when the kernel is compiled with the COMPAT_LINUX
option and the runtime sysctl kern.emul.linux is also set. If you are using the GENERIC kernel (which
you should be), COMPAT_LINUX is already enabled, and you will just need to do:

sysctl kern.emul.linux=1

For this to be done automatically each time the computer boots, remove the # (comment) character at the
beginning of the line

http://www.openbsd.org/faq/faq9.html (4 of 5)4/29/2009 5:05:25 PM

http://www.openwall.com/john/
http://www.openbsd.org/cgi-bin/man.cgi?query=awk&sektion=1

9 - Migrating to OpenBSD

#kern.emul.linux=1 # enable running Linux binaries

in /etc/sysctl.conf, so that it reads

kern.emul.linux=1 # enable running Linux binaries

and reboot your system to have it take effect.

To run any Linux binaries that are not statically linked (most of them), you need to follow the
instructions on the compat_linux(8) manual page.

A simple way to get most of the useful Linux libraries is to install the fedora/base package from
your nearest FTP mirror. To find out more about the packages and ports system read FAQ 15 - The
OpenBSD Packages and Ports System. To install the above mentioned package you would issue

export PKG_PATH=ftp://your.ftp.mirror/pub/OpenBSD/4.4/
packages/i386/
pkg_add -i fedora_base

Note that pkg_add(1) will automatically execute sysctl to set kern.emul.linux to the correct value upon
adding this package. However, it does not change /etc/sysctl.conf, so if you wish Linux
emulation to be enabled by default, you need to modify kern.emul.linux there.

9.5 - Accessing your Linux files from OpenBSD

OpenBSD supports the EXT2FS file system. For further information, see FAQ 14.

[FAQ Index] [To Section 8 - General Questions] [To Section 10 - System Management]

 www@openbsd.org
$OpenBSD: faq9.html,v 1.91 2008/10/31 16:52:30 nick Exp $

http://www.openbsd.org/faq/faq9.html (5 of 5)4/29/2009 5:05:25 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=compat_linux&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=pkg_add&sektion=1
mailto:www@openbsd.org

10 - System Management

[FAQ Index] [To Section 9 - Migrating to OpenBSD] [To Section 11 - The X Window System]

10 - System Management

Table of Contents

● 10.1 - When I try to su to root it says that I'm in the wrong group.
● 10.2 - How do I duplicate a filesystem?
● 10.3 - How do I start daemons with the system? (Overview of rc(8))
● 10.4 - Why do users get relaying access denied when they are remotely sending mail through my

OpenBSD system?
● 10.5 - I've set up POP, but I get errors when accessing my mail through POP. What can I do?
● 10.6 - Why does Sendmail ignore /etc/hosts?
● 10.7 - Setting up a Secure HTTP Server using ssl(8)
● 10.8 - I made changes to /etc/passwd with an editor, but the changes didn't seem to take place.

Why?
● 10.9 - How do I add a user? Or delete a user?
● 10.10 - How do I create a ftp-only account?
● 10.11 - Setting up user disk quotas
● 10.12 - Setting up KerberosV Clients and Servers
● 10.13 - Setting up an Anonymous FTP Server
● 10.14 - Confining users to their home directories in ftpd(8)
● 10.15 - Applying patches in OpenBSD
● 10.16 - Tell me about chroot(2) Apache?
● 10.17 - Can I change the root shell?
● 10.18 - What else can I do with ksh?
● 10.19 - Directory services

❍ 10.19.1 - Which directory services are available?
❍ 10.19.2 - YP security considerations
❍ 10.19.3 - Setting up a YP server
❍ 10.19.4 - Setting up a YP client

http://www.openbsd.org/faq/faq10.html (1 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/index.html

10 - System Management

10.1 - Why does it say that I'm in the wrong group when I try to
su root?

Existing users must be added to the "wheel" group by hand. This is done for security reasons, and you
should be cautious with whom you give access to. On OpenBSD, users who are in the wheel group are
allowed to use the su(1) userland program to become root. Users who are not in "wheel" cannot use su
(1). Here is an example of a /etc/group entry to place the user ericj into the "wheel" group.

If you are adding a new user with adduser(8), you can put them in the wheel group by answering wheel at
"Invite user into other groups:". This will add them to /etc/group, which will look
something like this:

wheel:*:0:root,ericj

If you are looking for a way to allow users limited access to superuser privileges without putting them in
the "wheel" group, use sudo(8).

10.2 - How do I duplicate a filesystem?

To duplicate your filesystem use dump(8) and restore(8). For example, to duplicate everything under
directory SRC to directory DST, do a:

cd /SRC; dump 0f - . | (cd /DST; restore -rf -)

dump is designed to give you plenty of backup capabilities, and it may be an overkill if you just want to
duplicate a part of a (or an entire) filesystem. The command tar(1) may be faster for this operation. The
format looks very similar:

cd /SRC; tar cf - . | (cd /DST; tar xpf -)

10.3 - How do I start daemons with the system? (Overview of rc
(8))

OpenBSD uses an rc(8) style startup. This uses a few key files for startup.

● /etc/rc - Main script. Should not be edited.
● /etc/rc.conf - Configuration file used by /etc/rc to know what daemons should start with the system.
● /etc/rc.conf.local - Configuration file you can use to override settings in /etc/rc.conf so you don't

have to touch /etc/rc.conf itself, which is convenient when upgrading your system.
● /etc/netstart - Script used to initialize the network. Shouldn't be edited.

http://www.openbsd.org/faq/faq10.html (2 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=su&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=adduser&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=sudo&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=dump&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=restore&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=tar&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=rc&sektion=8

10 - System Management

● /etc/rc.local - Script used for local administration. This is where new daemons or host specific
information should be stored.

● /etc/rc.securelevel - Script which runs commands that must be run before the security level
changes. See init(8)

● /etc/rc.shutdown - Script run on shutdown. Put anything you want done before shutdown in this
file. See rc.shutdown(8)

How does rc(8) work?

The main files a system administrator should concentrate on are /etc/rc.conf (or /etc/rc.conf.local), /etc/rc.
local and /etc/rc.shutdown. To get a look of how the rc(8) procedure works, here is the flow:

After the kernel is booted, /etc/rc is started:

● Filesystems are checked.
● Configuration variables are read in from /etc/rc.conf and, afterwards, /etc/rc.conf.local. Settings in

rc.conf.local will override those in rc.conf.
● Filesystems are mounted
● Clears out /tmp and preserves any editor files
● Configures the network via /etc/netstart

❍ Configures your interfaces up.
❍ Sets your hostname, domainname, etc.

● Starts system daemons
● Performs various other checks (quotas, savecore, etc)
● Local daemons are run, via /etc/rc.local

Starting Daemons and Services that come with OpenBSD

Most daemons and services that come with OpenBSD by default can be started on boot by simply editing
the /etc/rc.conf configuration file. To start out take a look at the default /etc/rc.conf file. You'll see lines
similar to this:

ftpd_flags=NO # for non-inetd use: ftpd_flags="-D"

A line like this shows that ftpd is not to start up with the system (at least not via rc(8), read the
Anonymous FTP FAQ to read more about this). In any case, each line has a comment showing you the
flags for NORMAL usage of that daemon or service. This doesn't mean that you must run that daemon or
service with those flags. Read the relevant manual page to see how you can have that daemon or service
start up in any way you like. For example, here is the default line pertaining to httpd(8).

httpd_flags=NO # for normal use: "" (or "-DSSL"
after reading ssl(8))

http://www.openbsd.org/faq/faq10.html (3 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=init&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=rc.shutdown&sektion=8
http://www.openbsd.org/cgi-bin/cvsweb/~checkout~/src/etc/rc.conf?content-type=text/plain

10 - System Management

Here you can obviously see that starting up httpd normally no flags are necessary. So a line like: "
httpd_flags=""" would be necessary. But to start httpd with ssl enabled. (Refer to the SSL FAQ or ssl(8))
You should start with a line like: "httpd_flags="-DSSL"".

A good approach is to never touch /etc/rc.conf itself. Instead, create the file /etc/rc.conf.local, copy just the
lines you are about to change from /etc/rc.conf and adjust them as you like. This makes future upgrades
easier -- all the changes are in the one file.

Starting up local daemons and configuration

For other daemons which you might install on the system via packages or other ways, you should use the /
etc/rc.local file. For example, I've installed a daemon which lies at /usr/local/sbin/daemonx. I want it to
start at boot time. I would put an entry into /etc/rc.local like this:

if [-x /usr/local/sbin/daemonx]; then
 echo -n ' daemonx'; /usr/local/sbin/daemonx
fi

(If the daemon does not automatically detach on startup, remember to add a "&" at the end of the
command line.)

From now on, this daemon will be started at boot. You will be able to see any errors on boot, a normal
boot with no errors would show a line like this:

Starting local daemons: daemonx.

rc.shutdown

/etc/rc.shutdown is a script that is run at shutdown. Anything you want done before the system shuts down
should be added to this file. If you have apm, you can also set "powerdown=YES", which will give you
the equivalent of "shutdown -p".

10.4 - Why do users get "relaying denied" when they are
remotely sending mail through my OpenBSD system?

Try this:

grep relay-domains /etc/mail/sendmail.cf

The output may look something like this:

http://www.openbsd.org/faq/faq10.html (4 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ssl&sektion=8

10 - System Management

FR-o /etc/mail/relay-domains

If this file doesn't exist, create it. You will need to enter the hosts who are sending mail remotely with the
following syntax:

.domain.com #Allow relaying for/to any host in domain.com
sub.domain.com #Allow relaying for/to sub.domain.com and any
host in that domain
10.2 #Allow relaying from all hosts in the IP net
10.2.*.*

Don't forget send a 'HangUP' signal to sendmail (a signal which causes most daemons to re-read their
configuration file):

kill -HUP `head -1 /var/run/sendmail.pid`

Further Reading

● http://www.sendmail.org/~ca/email/relayingdenied.html
● http://www.sendmail.org/tips/relaying.php
● http://www.sendmail.org/antispam/

10.5 - I've set up POP, but users have trouble accessing mail
through POP. What can I do?

Most issues dealing with POP are problems with temporary files and lock files. If your pop server sends an
error message such as:

-ERR Couldn't open temporary file, do you own it?

Try setting up your permissions as such:

permission in /var
drwxrwxr-x 2 bin mail 512 May 26 20:08 mail

permissions in /var/mail
-rw------- 1 username username 0 May 26 20:08
username

http://www.openbsd.org/faq/faq10.html (5 of 31)4/29/2009 5:05:31 PM

http://www.sendmail.org/~ca/email/relayingdenied.html
http://www.sendmail.org/tips/relaying.php
http://www.sendmail.org/antispam/

10 - System Management

Another thing to check is that the user actually owns their own /var/mail file. Of course this should be the
case (as in, /var/mail/joe should be owned by joe) but if it isn't set correctly it could be the problem!

Of course, making /var/mail writable by group mail opens up some vague and obscure security problems.
It is likely that you will never have problems with it. But it could (especially if you are a high profile site,
ISP, ...)! There are several POP servers you can install right away from the ports collection. If possible,
use popa3d which is available in the OpenBSD base install. Or, you could just have the wrong options
selected for your pop daemon (like dot locking). Or, you may just need to change the directory that it locks
in (although then the locking would only be valuable for the POP daemon.)

Note: OpenBSD does not have a group name of "mail". You need to create this in your /etc/group file if
you need it. An entry like:

mail:*:6:

would be sufficient.

10.6 - Why does Sendmail ignore the /etc/hosts file?

By default, Sendmail uses DNS for name resolution, not the /etc/hosts file. The behavior can be
changed through the use of the /etc/mail/service.switch file.

If you wish to query the hosts file before DNS servers, create a /etc/mail/service.switch file
which contains the following line:

hosts files dns

If you wish to query ONLY the hosts file, use the following:

hosts files

Send Sendmail a HUP signal:

kill -HUP `head -1 /var/run/sendmail.pid`

and the changes will take effect.

10.7 - Setting up a Secure HTTP server with SSL(8)

OpenBSD ships with an SSL-ready httpd and RSA libraries. For use with httpd(8), you must first have a
certificate created. This will be kept in /etc/ssl/ with the corresponding key in /etc/ssl/private/. The steps

http://www.openbsd.org/faq/faq10.html (6 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=popa3d&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=httpd&sektion=8

10 - System Management

shown here are taken in part from the ssl(8) man page. Refer to it for further information. This FAQ entry
only outlines how to create an RSA certificate for web servers, not a DSA server certificate. To find out
how to do so, please refer to the ssl(8) man page.

To start off, you need to create your server key and certificate using OpenSSL:

openssl genrsa -out /etc/ssl/private/server.key 1024

Or, if you wish the key to be encrypted with a passphrase that you will have to type in when starting
servers

openssl genrsa -des3 -out /etc/ssl/private/server.key 1024

The next step is to generate a Certificate Signing Request which is used to get a Certifying Authority (CA)
to sign your certificate. To do this use the command:

openssl req -new -key /etc/ssl/private/server.key -out /etc/
ssl/private/server.csr

This server.csr file can then be given to Certifying Authority who will sign the key. One such CA is
Thawte Certification which you can reach at http://www.thawte.com/.

If you cannot afford this, or just want to sign the certificate yourself, you can use the following.

openssl x509 -req -days 365 -in /etc/ssl/private/server.csr
\
 -signkey /etc/ssl/private/server.key -out /etc/ssl/
server.crt

With /etc/ssl/server.crt and /etc/ssl/private/server.key in place, you should be able to start httpd(8) with the
-DSSL flag (see the section about rc(8) in this faq), enabling https transactions with your machine on port
443.

10.8 - I edited /etc/passwd, but the changes didn't seem to take
place. Why?

If you edit /etc/passwd directly, your changes will be lost. OpenBSD generates /etc/passwd dynamically
with pwd_mkdb(8). The main password file in OpenBSD is /etc/master.passwd. According to pwd_mkdb
(8),

FILES

http://www.openbsd.org/faq/faq10.html (7 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ssl&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ssl&sektion=8
http://www.thawte.com/
http://www.openbsd.org/cgi-bin/man.cgi?query=httpd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=pwd_mkdb&sektion=8

10 - System Management

 /etc/master.passwd current password file
 /etc/passwd a 6th Edition-style password file
 /etc/pwd.db insecure password database file
 /etc/pwd.db.tmp temporary file
 /etc/spwd.db secure password database file
 /etc/spwd.db.tmp temporary file

In a traditional Unix password file, such as /etc/passwd, everything including the user's encrypted
password is available to anyone on the system (and is a prime target for programs such as Crack). 4.4BSD
introduced the master.passwd file, which has an extended format (with additional options beyond those
provided by /etc/passwd) and is only readable by root. For faster access to data, the library calls which
access this data normally read /etc/pwd.db and /etc/spwd.db.

OpenBSD does come with a tool with which you should edit your password file. It is called vipw(8). Vipw
will use vi (or your favourite editor defined per $EDITOR) to edit /etc/master.passwd. After you are done
editing, it will re-create /etc/passwd, /etc/pwd.db, and /etc/spwd.db as per your changes. Vipw also takes
care of locking these files, so that if anyone else attempts to change them at the same time, they will be
denied access.

10.9 - What is the best way to add and delete users?

OpenBSD provides two commands for easily adding users to the system:

● adduser(8)
● user(8)

You can also add users by hand, using vipw(8), but this is more difficult for most operations.

The easiest way to add a user in OpenBSD is to use the adduser(8) script. You can configure adduser(8)
by editing /etc/adduser.conf. adduser(8) allows for consistency checks on /etc/passwd, /etc/group, and
shell databases. It will create the entries and $HOME directories for you. It can even send a message to the
user welcoming them. Here is an example user, testuser, being added to a system. He/she will be given
the $HOME directory /home/testuser, made a member of the group guest, and given the shell /bin/ksh.

adduser
Use option ``-silent'' if you don't want to see all warnings
and questions.

Reading /etc/shells
Reading /etc/login.conf
Check /etc/master.passwd
Check /etc/group

http://www.openbsd.org/faq/faq10.html (8 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=vipw&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=vipw&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=adduser&sektion=8

10 - System Management

Ok, let's go.
Don't worry about mistakes. I will give you the chance later
to correct any input.
Enter username []: testuser
Enter full name []: Test FAQ User
Enter shell csh ksh nologin sh [sh]: ksh
Uid [1002]: Enter
Login group testuser [testuser]: guest
Login group is ``guest''. Invite testuser into other groups:
guest no
[no]: no
Login class auth-defaults auth-ftp-defaults daemon default
staff
[default]: Enter
Enter password []: Type password, then Enter
Enter password again []: Type password, then Enter

Name: testuser
Password: ****
Fullname: Test FAQ User
Uid: 1002
Gid: 31 (guest)
Groups: guest
Login Class: default
HOME: /home/testuser
Shell: /bin/ksh
OK? (y/n) [y]: y
Added user ``testuser''
Copy files from /etc/skel to /home/testuser
Add another user? (y/n) [y]: n
Goodbye!

To delete users you should use the rmuser(8) utility. This will remove all existence of a user. It will
remove any crontab(1) entries, their $HOME dir (if it is owned by the user), and their mail. Of course it
will also remove their /etc/passwd and /etc/group entries. Next is an example of removing the user that
was added above. Notice you are prompted for the name, and whether or not to remove the user's home
directory.

rmuser
Enter login name for user to remove: testuser
Matching password entry:

http://www.openbsd.org/faq/faq10.html (9 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=rmuser&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=crontab&sektion=1

10 - System Management

testuser:$2a$07$ZWnBOsbqMJ.
ducQBfsTKUe3PL97Ve1AHWJ0A4uLamniLNXLeYrEie:1002
:31::0:0:Test FAQ User:/home/testuser:/bin/ksh

Is this the entry you wish to remove? y
Remove user's home directory (/home/testuser)? y
Updating password file, updating databases, done.
Updating group file: done.
Removing user's home directory (/home/testuser): done.

Adding users via user(8)

These tools are less interactive than the adduser(8) command, which makes them easier to use in scripts.

The full set of tools is:

● group(8)
● groupadd(8)
● groupdel(8)
● groupinfo(8)
● groupmod(8)
● user(8)
● useradd(8)
● userdel(8)
● userinfo(8)
● usermod(8)

Actually adding users

Being that user(8) is not interactive, the easiest way to add users efficiently is to use the adduser(8)
command. The actual command /usr/sbin/user is just a frontend to the rest of the /usr/sbin/user*
commands. Therefore, the following commands can be added by using user add or useradd, its your
choice as to what you want, and doesn't change the use of the commands at all.

In this example, we are adding the same user with the same specifications as the user that was added
above. useradd(8) is much easier to use if you know the default setting before adding a user. These
settings are located in /etc/usermgmt.conf and can be viewed by doing so:

$ user add -D
group users
base_dir /home

http://www.openbsd.org/faq/faq10.html (10 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=adduser&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=group&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=groupadd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=groupdel&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=groupinfo&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=groupmod&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=user&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=useradd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=userdel&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=userinfo&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=usermod&sektion=8

10 - System Management

skel_dir /etc/skel
shell /bin/csh
inactive 0
expire Null (unset)
range 1000..60000

The above settings are what will be set unless you specify different with command line options. For
example, in our case, we want the user to go to the group guest, not users. One more little hurdle with
adding users, is that passwords must be specified on the command line. This is, the encrypted passwords,
so you must first use the encrypt(1) utility to create the password. For example: OpenBSD's passwords by
default use the Blowfish algorithm for 6 rounds. Here is an example line to create an encrypted password
to specify to useradd(8).

$ encrypt -p -b 6
Enter string:
$2a$06$YOdOZM3.4m6MObBXjeZtBOWArqC2.uRJZXUkOghbieIvSWXVJRzlq

Now that we have our encrypted password, we are ready to add the user.

user add -p '$2a$06$YOdOZM3.4m6MObBXjeZtBOWArqC2.
uRJZXUkOghbieIvSWXVJRzlq' -u 1002 \
-s /bin/ksh -c "Test FAQ User" -m -g guest testuser

Note: Make sure to use ' ' (single quotes) around the password string, not " " (double quotes) as the shell
will interpret these before sending it to user(8). In addition to that, make sure you specify the -m option if
you want the user's home directory created and the files from /etc/skel copied over.

To see that the user was created correctly, we can use many different utilities. Below are a few commands
you can use to quickly check that everything was created correctly.

$ ls -la /home
total 14
drwxr-xr-x 5 root wheel 512 May 12 14:29 .
drwxr-xr-x 15 root wheel 512 Apr 25 20:52 ..
drwxr-xr-x 24 ericj wheel 2560 May 12 13:38 ericj
drwxr-xr-x 2 testuser guest 512 May 12 14:28 testuser
$ id testuser
uid=1002(testuser) gid=31(guest) groups=31(guest)
$ finger testuser
Login: testuser Name: Test FAQ User
Directory: /home/testuser Shell: /bin/ksh
Last login Sat Apr 22 16:05 (EDT) on ttyC2
No Mail.

http://www.openbsd.org/faq/faq10.html (11 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=encrypt&sektion=1

10 - System Management

No Plan.

In addition to these commands, user(8) provides its own utility to show user characteristics, called userinfo
(8).

$ userinfo testuser
login testuser
passwd *
uid 1002
groups guest
change Wed Dec 31 19:00:00 1969
class
gecos Test FAQ User
dir /home/testuser
shell /bin/ksh
expire Wed Dec 31 19:00:00 1969

Removing users

To remove users with the user(8) hierarchy of commands, you will use userdel(8). This is a very simple,
yet usable command. To remove the user created in the last example, simply:

userdel -r testuser

Notice the -r option, which must be specified if you want the users home directory to be deleted as well.
Alternatively, you can specify -p and not -r and this will lock the user's account, but not remove any
information.

10.10 - How do I create an ftp-only account (not anonymous
FTP!)?

There are a few ways to do this, but a very common way to do such is to add "/usr/bin/false" into
"/etc/shells". Then when you set a users shell to "/usr/bin/false", they will not be able log in
interactively, but will be able to use ftp capabilities. You may also want to restrict access by Confining
users to their home directory in ftpd.

10.11 - Setting up Quotas

Quotas are used to limit user's space that they have available to them on your disk drives. It can be very
helpful in situations where you have limited resources. Quotas can be set by user and/or by group.

http://www.openbsd.org/faq/faq10.html (12 of 31)4/29/2009 5:05:31 PM

10 - System Management

The first step to setting up quotas is to make sure that "option QUOTA" is in your Kernel Configuration.
This option is in the GENERIC kernel. After this, you need to mark in /etc/fstab the filesystems
which will have quotas enabled. The keywords userquota and groupquota should be used to mark
each filesystem that you will be using quotas on. By default, the files quota.user and quota.group
will be created at the root of that filesystem to hold the quota information. This default can be overridden
by specifying the file name with the quota option in /etc/fstab, such as "userquota=/var/
quotas/quota.user". Here is an example /etc/fstab that has one filesystem with userquotas
enabled, and the quota file in a non-standard location:

/dev/wd0a / ffs rw,userquota=/var/quotas/quota.user 1 1

Now it's time to set the user's quotas. To do so you use the utility edquota(8). A simple use is just
"edquota <user>". edquota(8) will use vi(1) to edit the quotas unless the environmental variable
EDITOR is set to a different editor. For example:

edquota ericj

This will give you output similar to this:

Quotas for user ericj:
/: KBytes in use: 62, limits (soft = 0, hard = 0)
 inodes in use: 25, limits (soft = 0, hard = 0)

To add limits, edit it to give results like this:

Quotas for user ericj:
/: KBytes in use: 62, limits (soft = 1000, hard = 1050)
 inodes in use: 25, limits (soft = 0, hard = 0)

Note that the quota allocation is in 1k blocks. In this case, the softlimit is set to 1000k, and the hardlimit is
set to 1050k. A softlimit is a limit where the user is just warned when they cross it and have until their
grace period is up to get their disk usage below their limit. Grace periods can be set by using the -t option
on edquota(8). After the grace period is over the softlimit is handled as a hardlimit. This usually results in
an allocation failure.

Now that the quotas are set, you need to turn the quotas on. To do this use quotaon(8). For example:

quotaon -a

This will go through /etc/fstab to turn on the filesystems with quota options. Now that quotas are up
and running, you can view them using quota(1). Using a command of "quota <user>" will give that
user's information. When called with no arguments, the quota(1) command will give your quota statistics.

http://www.openbsd.org/faq/faq10.html (13 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=fstab&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=edquota&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=quotaon&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=quota&sektion=1

10 - System Management

For example:

quota ericj

Will result in output similar to this:

Disk quotas for user ericj (uid 1001):
 Filesystem blocks quota limit grace files
quota limit grace
 / 62 1000 1050 27
0 0

By default quotas set in /etc/fstab will be started on boot. To turn them off use

quotaoff -a

10.12 - Setting up KerberosV Clients and Servers

OpenBSD includes KerberosV as a pre-installed component of the default system.

For more information on KerberosV, from your OpenBSD system, use the command:

info heimdal

10.13 - Setting up Anonymous FTP Services

Anonymous FTP allows users without accounts to access files on your computer via the File Transfer
Protocol. This will give an overview of setting up the anonymous FTP server, and its logging, etc.

Adding the FTP account

To start off, you need to have an ftp account on your system. This account should not have a usable
password. Here we will set the login directory to /home/ftp, but you can put it wherever you want. When
using anonymous ftp, the ftp daemon will chroot itself to the home directory of the ftp user. To read up
more on that, read the ftpd(8) and chroot(2) man pages. Here is an example of adding the ftp user. I will do
this using adduser(8). We also need to add /usr/bin/false to our /etc/shells, this is the "shell" that we will be
giving to the ftp user. This won't allow them to login, even though we will give them an empty password.
To do this you can simply do

echo /usr/bin/false >> /etc/shells

http://www.openbsd.org/faq/faq10.html (14 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ftpd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=chroot&sektion=2
http://www.openbsd.org/cgi-bin/man.cgi?query=adduser&sektion=8

10 - System Management

After this, you are ready to add the ftp user:

adduser
Use option ``-silent'' if you don't want to see all warnings
and questions.

Reading /etc/shells
Reading /etc/login.conf
Check /etc/master.passwd
Check /etc/group

Ok, let's go.
Don't worry about mistakes. I will give you the chance later
to correct any input.
Enter username []: ftp
Enter full name []: anonymous ftp
Enter shell csh false ksh nologin sh tcsh zsh [sh]: false
Uid [1002]: Enter
Login group ftp [ftp]: Enter
Login group is ``ftp''. Invite ftp into other groups: guest
no
[no]: no
Login class auth-defaults auth-ftp-defaults daemon default
staff
[default]: Enter
Enter password []: Enter
Set the password so that user cannot logon? (y/n) [n]: y

Name: ftp
Password: ****
Fullname: anonymous ftp
Uid: 1002
Gid: 1002 (ftp)
Groups: ftp
Login Class: default
HOME: /home/ftp
Shell: /usr/bin/false
OK? (y/n) [y]: y
Added user ``ftp''
Copy files from /etc/skel to /home/ftp
Add another user? (y/n) [y]: n
Goodbye!

Directory Setup

http://www.openbsd.org/faq/faq10.html (15 of 31)4/29/2009 5:05:31 PM

10 - System Management

Along with the user, this created the directory /home/ftp. This is what we want, but there are some changes
that we will have to make to get it ready for anonymous ftp. Again these changes are explained in the ftpd
(8) man page.

You do not need to make a /home/ftp/usr or /home/ftp/bin directory.

● /home/ftp - This is the main directory. It should be owned by root and have permissions of 555.
● /home/ftp/etc - This is entirely optional and not recommended, as it only serves to give out

information on users which exist on your box. If you want your anonymous ftp directory to appear
to have real users attached to your files, you should copy /etc/pwd.db and /etc/group to this
directory. This directory should be mode 511, and the two files should be mode 444. These are
used to give owner names as opposed to numbers. There are no passwords stored in pwd.db, they
are all in spwd.db, so don't copy that over.

● /home/ftp/pub - This is a standard directory to place files in which you wish to share. This directory
should also be mode 555.

Note that all these directories should be owned by ''root''. Here is a listing of what the directories should
look like after their creation.

pwd
/home
ls -laR ftp
total 5
dr-xr-xr-x 5 root ftp 512 Jul 6 11:33 .
drwxr-xr-x 7 root wheel 512 Jul 6 10:58 ..
dr-x--x--x 2 root ftp 512 Jul 6 11:34 etc
dr-xr-xr-x 2 root ftp 512 Jul 6 11:33 pub

ftp/etc:
total 43
dr-x--x--x 2 root ftp 512 Jul 6 11:34 .
dr-xr-xr-x 5 root ftp 512 Jul 6 11:33 ..
-r--r--r-- 1 root ftp 316 Jul 6 11:34 group
-r--r--r-- 1 root ftp 40960 Jul 6 11:34 pwd.db

ftp/pub:
total 2
dr-xr-xr-x 2 root ftp 512 Jul 6 11:33 .
dr-xr-xr-x 5 root ftp 512 Jul 6 11:33 ..

Starting up the server and logging

http://www.openbsd.org/faq/faq10.html (16 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ftpd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ftpd&sektion=8

10 - System Management

You can choose to start ftpd either by inetd(8) or from the rc scripts. These examples will show our
daemon being started from inetd.conf. First we must become familiar with some of the options to ftpd.
The default line from /etc/inetd.conf is:

ftp stream tcp nowait root /usr/libexec/
ftpd ftpd -US

Here ftpd is invoked with -US. This will log anonymous connections to /var/log/ftpd and concurrent
sessions to /var/run/utmp. That will allow for these sessions to be seen via who(1). For some, you might
want to run only an anonymous server, and disallow ftp for users. To do so you should invoke ftpd with
the -A option. Here is a line that starts ftpd up for anonymous connections only. It also uses -ll which logs
each connection to syslog, along with the get, retrieve, etc., ftp commands.

ftp stream tcp nowait root /usr/libexec/
ftpd ftpd -llUSA

Note: For people using HIGH traffic ftp servers, you might not want to invoke ftpd from inetd.conf. The
best option is to comment the ftpd line from inetd.conf and start ftpd from rc.conf.local along with the -D
option. This will start ftpd as a daemon, and has much less overhead as starting it from inetd. Here is an
example line to start it from rc.conf.local.

ftpd_flags="-DllUSA" # for non-inetd use:
ftpd_flags="-D"

This of course only works if you have ftpd taken out of /etc/inetd.conf and made inetd re-read its
configuration file.

Other relevant files

● /etc/ftpwelcome - This holds the Welcome message for people once they have connected to your ftp
server.

● /etc/motd - This holds the message for people once they have successfully logged into your ftp
server.

● .message - This file can be placed in any directory. It will be shown once a user enters that
directory.

10.14 - Confining users to their home directories in ftpd(8)

By default, when logging in by ftp, users can change to any directory on the filesystem that they have
access to. This may not be desirable in some cases. It is possible to restrict what users may see through ftp
sessions by chrooting them to their home directory.

http://www.openbsd.org/faq/faq10.html (17 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=inetd&sektion=8

10 - System Management

If you only wish to allow chrooted ftp logins, use the -A option to ftpd(8).

If you wish to apply them more finely, OpenBSD's login capability infrastructure and ftpd(8) together
make this easy.

Users in a login class with the ftp-chroot variable set are automatically chrooted. Additionally, you
can add a username to the file /etc/ftpchroot to chroot those usernames. A user only needs to be listed in
one of these locations.

10.15 - Applying patches in OpenBSD

Even with OpenBSD, bugs happen. Some bugs may lead to reliability issues (i.e., something may cause
the system to stop functioning as desired). Other bugs may lead to security vulnerabilities (which may
allow others to "use" your computer in unintended ways). When a critical bug is found, the fix will be
committed to the -current source tree, and patches will be released for the supported releases of
OpenBSD. These patches appear on the errata web page, and are separated into "common" errata that
impact all platforms, and errata that impact only one or more, but not all, platforms.

Note, however, that patches aren't made for new additions to OpenBSD, and are only done for important
reliability fixes or security problems that should be addressed right away on impacted systems (which is
often NOT all systems, depending on their purpose).

There are three ways to update your system with patched code:

● Upgrade your system to -current. As all fixes are applied to the -current code base, updating your
system to the latest snapshot is a very good way to apply fixed code. However, running -current is
not for everyone.

● Update your system to -stable. This is done by fetching or updating your source tree using the
appropriate -stable branch, and recompiling the kernel and userland files. Overall, this is probably
the easiest way, though it takes longer (as the entire system gets recompiled) and a complete source
checkout can take a long time if you have limited bandwidth available.

● Patch, compile and install individual impacted files. This is what we will use for our example
below. While this requires less bandwidth and typically less time than an entire cvs(1) checkout/
update and source code compilation, this is sometimes the most difficult option, as there is no one
universal set of instructions to follow. Sometimes you must patch, recompile and install one
application, other times, you might have to recompile entire sections of the tree if the problem is in
a library file.

Again, patching individual files is not always simple, so give serious thought to following the -stable (or
"patch") branch of OpenBSD. Mixing and matching of patching solutions can be done if you understand
how everything works, but new users should pick one method and stick with it.

http://www.openbsd.org/faq/faq10.html (18 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ftpd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=login.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=ftpd&sektion=8
http://www.openbsd.org/errata.html
http://www.openbsd.org/plat.html
http://www.openbsd.org/faq/current.html
http://www.openbsd.org/stable.html
http://www.openbsd.org/stable.html

10 - System Management

How are "errata" patches different from what is in the CVS tree?

All patches posted to the errata web page are patches directly against the indicated release's source tree.
Patches against the latest CVS tree might also include other changes that wouldn't be wanted on a release
system. This is important: If you have installed a snapshot, checked out the source trees at the time you
obtained that snapshot and attempt to patch it using a published patch, you may well find the patch doesn't
apply, as that code may have changed.

Applying patches.

Patches for the OpenBSD Operating System are distributed as "Unified diffs", which are text files that
hold differences to the original source code. They are NOT distributed in binary form. This means that to
patch your system you must have the source code from the RELEASE version of OpenBSD readily
available. In general, you should have the entire source tree available. If you are running a release from
official CDROM, the source trees are available on disk 3, they are also available as files from the FTP
servers. We will assume you have the entire tree checked out.

For our example here, we will look at patch 001 for OpenBSD 3.6 dealing with the st(4) driver, which
handles tape drives. Without this patch, recovering data from backups is quite difficult. People using a
tape drive need this patch, however those without a tape drive may have no particular need to install it.
Let's look at the patch:

more 001_st.patch
Apply by doing:
 cd /usr/src
 patch -p0 < 001_st.patch

Rebuild your kernel.

Index: sys/scsi/st.c
===
RCS file: /cvs/src/sys/scsi/st.c,v
retrieving revision 1.41
retrieving revision 1.41.2.1
diff -u -p -r1.41 -r1.41.2.1
--- sys/scsi/st.c 1 Aug 2004 23:01:06 -0000 1.41
+++ sys/scsi/st.c 2 Nov 2004 01:05:50 -0000
1.41.2.1
@@ -1815,7 +1815,7 @@ st_interpret_sense(xs)
 u_int8_t skey = sense->flags & SSD_KEY;
 int32_t info;

http://www.openbsd.org/faq/faq10.html (19 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/errata.html
http://www.openbsd.org/ftp.html
http://www.openbsd.org/ftp.html
http://www.openbsd.org/cgi-bin/man.cgi?query=st&sektion=4

10 - System Management

- if (((sense->flags & SDEV_OPEN) == 0) ||
+ if (((sc_link->flags & SDEV_OPEN) == 0) ||
 (serr != 0x70 && serr != 0x71))
 return (EJUSTRETURN); /* let the generic code
handle it */

As you will note, the top of the patch includes brief instructions on applying it. We will assume you have
put this patch into the /usr/src directory, in which case, the following steps are used:

cd /usr/src
patch -p0 < 001_st.patch
Hmm... Looks like a unified diff to me...
The text leading up to this was:

|Apply by doing:
| cd /usr/src
| patch -p0 < 001_st.patch
|
|Rebuild your kernel.
|
|Index: sys/scsi/st.c
|
===
|RCS file: /cvs/src/sys/scsi/st.c,v
|retrieving revision 1.41
|retrieving revision 1.41.2.1
|diff -u -p -r1.41 -r1.41.2.1
|--- sys/scsi/st.c 1 Aug 2004 23:01:06 -0000 1.41
|+++ sys/scsi/st.c 2 Nov 2004 01:05:50 -0000
1.41.2.1

Patching file sys/scsi/st.c using Plan A...
Hunk #1 succeeded at 1815. <-- Look for this
message!
done

Note the "Hunk #1 succeeded" message above. This indicates the patch was applied successfully.
Many patches are more complex than this one, and will involve multiple hunks and multiple files, in
which case, you should verify that all hunks succeeded on all files. If they did not, it normally means your
source tree is not right, you didn't follow instructions carefully, or your patch was mangled. Patches are
very sensitive to "white space" -- copying and pasting from your browser will often change tab characters
into spaces or otherwise alter the white space of a file, making it not apply.

http://www.openbsd.org/faq/faq10.html (20 of 31)4/29/2009 5:05:31 PM

10 - System Management

At this point, you can build the kernel as normal, install it and reboot the system.

Not all patches are for the kernel. In some cases, you will have to rebuild individual utilities. At other
times, will require recompiling all utilities statically linked to a patched library. Follow the guidance in the
header of the patch, and if uncertain, rebuild the entire system.

Patches that are irrelevant to your particular system need not be applied -- usually. For example, if you did
not have a tape drive on your system, you would not benefit from the above patch. However, patches are
assumed to be applied "in order" -- it is possible that a later patch is dependent upon an earlier one. Be
aware of this if you elect to "pick and choose" which patches you apply, and if in doubt, apply them all, in
order.

10.16 - Tell me about this chroot(2) Apache?

In OpenBSD, the Apache httpd(8) server has been chroot(2)ed by default. While this is a tremendous
boost to security, it can create issues, if you are not prepared.

What is a chroot?

A chroot(2)ed application is locked into a particular directory and unable to wander around the rest of the
directory tree, and sees that directory as its "/" (root) directory. In the case of httpd(8), the program starts,
opens its log files, binds to its TCP ports (though, it doesn't accept data yet), and reads its configuration.
Next, it locks itself into /var/www and drops privileges, then starts to accept requests. This means all files
served and used by Apache must be in the /var/www directory. In the default configuration of OpenBSD,
all the files in the /var/www directory are read-only by the user Apache runs as, www. This helps security
tremendously -- should there be a security issue with Apache, the damage will be confined to a single
directory with only "read only" permissions and no resources to cause mischief with.

What does this mean to the administrator?

Put bluntly, chroot(2)ing Apache is something not done by default in most other operating systems. Many
applications and system configurations will not work in a chroot(2) without some customization. Further,
it must be remembered that security and convenience are often not compatible goals. OpenBSD's
implementation of Apache does not compromise security for features or "ease".

● Historic file system layouts: Servers upgraded from older versions of OpenBSD may have web
files located in user's directories, which clearly won't work in a chroot(2)ed environment, as httpd
(8) can't reach the /home directory. Administrators may also discover their existing /var/www
partition is too small to hold all web files. Your options are to restructure or do not use the chroot
(2) feature. You can, of course, use symbolic links in the user's home directories pointing to
subdirectories in /var/www, but you can NOT use links in /var/www pointing to other parts of the
file system -- that is prevented from working by the chroot(2)ing. Note that if you want your users

http://www.openbsd.org/faq/faq10.html (21 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=httpd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=chroot&sektion=2
http://www.openbsd.org/cgi-bin/man.cgi?query=chroot&sektion=2

10 - System Management

to have chroot(2)ed FTP access, this will not work, as the FTP chroot will (again) prevent you from
accessing the targets of the symbolic links. A solution to this is to not use /home as your home
directories for these users, rather use something similar to /var/www/users. Symbolic links can be
used completely within the chroot(2), but they have to be relative, not absolute.

● Log Rotation: Normally, logs are rotated by renaming the old files, then sending httpd(8) a
SIGUSR1 signal to cause Apache to close its old log files and open new ones. This is no longer
possible, as httpd(8) has no ability to open log files for writing once privileges are dropped. httpd
(8) must be stopped and restarted. It sometimes takes a few seconds for all the child processes to
terminate, which must happen before httpd(8) can be restarted, so one possible way to rotate the
logs would be as follows:

apachectl stop
 rename your log files
apachectl start ; sleep 10 ; apachectl start

Yes, the last line attempts to restart Apache immediately, and in case that fails it waits a few
seconds and tries again. And yes, that does mean that for a few seconds every time you do your log
rotation, your web server will be unavailable. While this could be annoying, any attempt to permit
httpd(8) to reopen files after chroot(2)ing would defeat the very purpose of the chroot! There are
also other strategies available, including logging to a pipe(2), and using an external log rotator at
the other end of the pipe(2).

● Existing Apache modules: Virtually all will load, however some may not work properly in chroot
(2), and many have issues on "apachectl restart", generating an error, which causes httpd
(8) to exit.

● Existing CGIs: Most will NOT work as is. They may need programs or libraries outside /var/www.
Some can be fixed by compiling so they are statically linked (not needing libraries in other
directories), most may be fixed by populating the /var/www directory with the files required by the
application, though this is non-trivial and requires some knowledge of the program.

● File system mount options: By default in OpenBSD, your /var partition will be mounted with the
nosuid and nodev options. If you attempt to use an application within the chroot, you may need
to change those options. You may need to do that even if you don't use the chroot option, of course.

● Name Resolution: httpd(8) inside the chroot(2) will NOT be able to use the system /etc/hosts or /
etc/resolv.conf. Therefore, if you have applications which require name resolution, you will need to
populate /var/www/etc/hosts and/or /var/www/etc/resolv.conf in the chroot(2) environment. Note
that some applications expect the resolution of "localhost" to work.

In some cases, the application or configuration can be altered to run within the chroot(2). In other cases,
you will simply have to disable this feature using the -u option for httpd(8) in /etc/rc.conf.

Example of chroot(2)ing an app: wwwcount

As an example of a process that can be used to chroot an application, we will look at wwwcount, a simple
web page counter available through packages. While a very effective program, it knows nothing about

http://www.openbsd.org/faq/faq10.html (22 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=pipe&sektion=2
http://www.openbsd.org/cgi-bin/man.cgi?query=apachectl&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=rc.conf&sektion=8

10 - System Management

chroot(2)ed Apache, and will not work chroot(2)ed in its default configuration.

First, we install the wwwcount package. We configure it and test it, and we find it doesn't seem to work,
we get an Apache message saying "Internal Server Error". First step is to stop and restart Apache with the
-u switch to verify that the problem is the chroot(2)ing, and not the system configuration.

apachectl stop
/usr/sbin/apachectl stop: httpd stopped
httpd -u

After doing this, we see the counter works properly, at least after we change the ownership on a directory
so that Apache (and the CGIs it runs) can write to the files it keeps. So, we definitely have a chroot
problem, so we stop and restart Apache again, using the default chrooting:

apachectl stop
/usr/sbin/apachectl stop: httpd stopped
httpd

A good starting point would be to assume wwwcount uses some libraries and other files it can't get to in
the chroot. We can use the ldd(1) command to find out the dynamic object dependencies that the CGI
needs:

cd /var/www/cgi-bin/
ldd Count.cgi
Count.cgi:
 Start End Type Ref Name
 00000000 00000000 exe 1 Count.cgi
 03791000 237ca000 rlib 1 /usr/lib/libc.so.30.3
 03db4000 03db4000 rtld 1 /usr/libexec/ld.so

Ok, here is a problem, two files that are not available in the chroot(2) environment. So, we copy them
over:

mkdir -p /var/www/usr/lib /var/www/usr/libexec
cp /usr/lib/libc.so.30.3 /var/www/usr/lib
cp /usr/libexec/ld.so /var/www/usr/libexec

and try the counter again.

Well, now the program is running at least, and giving us error messages directly: "Unable to open config
file for reading". Progress, but not done yet. The configuration file is normally in /var/www/
wwwcount/conf, but within the chroot environment, that would seem to be /wwwcount/conf. Our

http://www.openbsd.org/faq/faq10.html (23 of 31)4/29/2009 5:05:31 PM

http://www.muquit.com/muquit/software/Count/Count.html
http://www.openbsd.org/cgi-bin/man.cgi?query=ldd&sektion=1

10 - System Management

options are to either recompile the program to make it work where the files are now, or move the data
files. As we installed from a package, we'll just move the data file. In order to use the same config either
chroot(2)ed or not, we'll use a symbolic link:

mkdir -p /var/www/var/www
cd /var/www/var/www
ln -s ../../wwwcount wwwcount

Note that the symbolic link is crafted to work within the chroot. Again, we test... and we find we have yet
another issue. Now wwwcount is complaining that it can't find the "strip image" files it uses to display
messages. After a bit of searching, we find those are stored in /usr/local/lib/wwwcount, so we
have to copy those into the chroot, as well.

tar cf - /usr/local/lib/wwwcount | (cd /var/www; tar xpf -)

we test again... and it works!

Note that we have copied over only files that are absolutely required for operation. In general, only the
minimum files needed to run an application should be copied into the chroot.

Should I use the chroot feature?

In the above example, the program is fairly simple, and yet we have seen several different kinds of
problems.

Not every application can or should be chroot(2)ed.

The goal is a secure web server, chroot(2)ing is just a tool to accomplish this, it is not the goal itself.
Remember, the starting configuration of the OpenBSD chroot(2)ed Apache is where the user the httpd(8)
program is running as can not run any programs, can not alter any files, and can not assume another user's
identity. Loosen these restrictions, you have lessened your security, chroot or no chroot.

Some applications are pretty simple, and chroot(2)ing them makes sense. Others are very complex, and are
either not worth the effort of forcing them into a chroot(2), or by the time you copy enough of the system
into the chroot, you have lost the benefit of the chroot(2) environment. For example, the OpenWebMail
program requires the ability to read and write to the mail directory, the user's home directory, and must be
able to work as any user on the system. Attempting to push it into a chroot would be completely pointless,
as you would end up disabling all the benefits of chroot(2)ing. Even with an application as simple as the
above counter, it must write to disk (to keep track of its counters), so some benefit of the chroot(2) is lost.

Any application which has to assume root privileges to operate is pointless to attempt to chroot(2), as root
can generally escape a chroot(2).

http://www.openbsd.org/faq/faq10.html (24 of 31)4/29/2009 5:05:31 PM

10 - System Management

Do not forget, if the chrooting process for your application is too difficult, you may not upgrade or update
the system as often as you should. This could end up making your system LESS secure than a more
maintainable system with the chroot feature deactivated.

10.17 - Can I change the root shell?

It is sometimes said that one should never change the root shell, though there is no reason not to in
OpenBSD.

The default shell for root on OpenBSD is ksh.

A traditional Unix guideline is to only use statically compiled shells for root, because if your system
comes up in single user mode, non-root partitions won't be mounted and dynamically linked shells won't
be able to access libraries located in the /usr partition. This isn't actually a significant issue for
OpenBSD, as the system will prompt you for a shell when it comes up in single user mode, and the default
is sh. The three standard shells in OpenBSD (csh, sh and ksh) are all statically linked, and thus usable in
single user mode.

10.18 - What else can I do with ksh?

In OpenBSD, ksh is pdksh, the Public Domain Korn Shell, and is the same binary as sh.

Users comfortable with bash, often used on Linux systems, will probably find ksh very familiar. Ksh(1)
provides most of the commonly used features in bash, including tab completion, command line editing and
history via the arrow keys, and CTRL-A/CTRL-E to jump to beginning/end of the command line. If other
features of bash are desired, bash itself can be loaded via either packages or ports.

The command prompt of ksh can easily be changed to something providing more information than the
default "$ " by setting the PS1 variable. For example, inserting the following line:

export PS1='$PWD $ '

in your /etc/profile produces the following command prompt:

/home/nick $

See the file /etc/ksh.kshrc, which includes many useful features and examples, and may be invoked
in your user's .profile.

OpenBSD's ksh(1) has been enhanced with a number of "special characters" for the primary prompt string,

http://www.openbsd.org/faq/faq10.html (25 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ksh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=sh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=csh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=sh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ksh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ksh&sektion=1
http://web.cs.mun.ca/~michael/pdksh/
http://www.openbsd.org/cgi-bin/man.cgi?query=sh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ksh&sektion=1
http://www.openbsd.org/cgi-bin/cvsweb/~checkout~/src/etc/ksh.kshrc?content-type=text/plain

10 - System Management

PS1, similar to those used in bash. For example:

\e - Insert an ASCII escape character.
\h - The hostname, minus domain name.
\H - The full hostname, including domain name.
\n - Insert a newline character.
\t - The current time, in 24-hour HH:MM:SS format.
\u - The current user's username.
\w - The current working directory. $HOME is abbreviated as `~'.
\W - The basename of the current working directory.
\$ - Displays "#" for root users, "$" for non-root users.

(see the ksh(1) man page for more details, and many, many more special characters! Also note the "$"
character has special meaning inside double quotes, so handle it carefully)

One could use the following command:

export PS1="\n\u@\H\n\w \\$ "

to give an overly verbose but somewhat useful prompt.

10.19 - Directory services

OpenBSD can be used for both servers and clients of databases containing user credentials, group
information and other network-related data.

10.19.1 - Which directory services are available?

Of course, you could use various directory services on OpenBSD. But YP is the only one that can be
accessed directly using standard C-library functions like getpwent(3), getgrent(3), gethostbyname(3) and
so on. Thus, if you keep your data in a YP database, you do not need to copy it to local configuration files
like master.passwd(5) before you can use it, for example to authenticate system users.

YP is a directory service compatible with Sun Microsystems NIS (Network Information System). See yp
(8) for an overview of the available manual pages. Be careful, some operating systems contain directory
services bearing similar names but all the same being incompatible, for example NIS+.

To use other directory services except YP, you either need to populate local configuration files from the
directory, or you need a YP frontend to the directory. For example, you can use the sysutils/
login_ldap port when you choose the former, while the ypldap(8) daemon provides the latter.

http://www.openbsd.org/faq/faq10.html (26 of 31)4/29/2009 5:05:31 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ksh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=getpwent&sektion=3
http://www.openbsd.org/cgi-bin/man.cgi?query=getgrent&sektion=3
http://www.openbsd.org/cgi-bin/man.cgi?query=gethostbyname&sektion=3
http://www.openbsd.org/cgi-bin/man.cgi?query=master.passwd&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=yp&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=yp&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ypldap&sektion=8

10 - System Management

For some applications, simply synchronizing a small number of configuration files among a group of
machines using tools like cron(8), scp(1) or rsync (available from ports) constitutes an easy and robust
alternative to a full-blown directory service.

10.19.2 - YP security considerations

For compatibility reasons, all security features built into the OpenBSD implementation of YP are switched
off by default. Even when they are all switched on, the NIS protocol is still inherently insecure for two
reasons: All data, including sensitive data like password hashes, is transmitted unencrypted across the
network, and neither the client nor the server can reliably verify each other's identity.

Thus, before setting up any YP server, you should consider whether these inherent security flaws are
acceptable in your context. In particular, YP is inadequate if potential attackers have physical access to
your network. Anybody gaining root access to any computer connected to your network segments carrying
YP traffic can bind your YP domain and retrieve its data. In some cases, passing YP traffic through SSL or
IPSec tunnels might be an option, or you might consider combining YP with kerberos(8) authentication.

10.19.3 - Setting up a YP server

A YP server serves a group of clients called a "domain". You should first select a domain name; it can be
an arbitrary string and need not be related in any way to DNS domain names. Choosing a random name
like "Eepoo5vi" can marginally improve security, though the effect is mostly in security by obscurity. In
case you need to maintain several distinct YP domains, it's probably better to choose descriptive names
like "sales", "marketing" and "research" in order to forestall system administration errors caused by
obscurity. Also note that some versions of SunOS require using the host's DNS domain name, so your
choice might be restricted in a network including such hosts.

1. Use the domainname(1) utility to set the domain name, and put it into the file defaultdomain(5) to
have it automatically set at system startup time.

echo "puffynet" > /etc/defaultdomain
domainname `cat /etc/defaultdomain`

2. Decide where to store the source files to generate your YP maps from. Usually, the default
location /etc is not appropriate: As a rule, you do not need all accounts and groups existing on
the server on all your client hosts. In particular, not serving the root account and thus keeping root's
password hash confidential is often beneficial to security. The only inconvenience caused by
changing the source directory is that you will not be able to add, remove and modify users and
groups in the YP domain using utilities like user(8) and group(8). Instead, you will have to edit the
configuration files with a text editor.

To define the source directory, edit the file /var/yp/Makefile.yp and change the DIR

http://www.openbsd.org/faq/faq10.html (27 of 31)4/29/2009 5:05:32 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=cron&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=scp&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=kerberos&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=domainname&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=defaultdomain&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=user&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=group&sektion=8

10 - System Management

variable, e.g.

DIR=/etc/yp/src/puffynet

If all your YP clients run OpenBSD or FreeBSD, exclude the encrypted passwords from the
passwd maps by setting UNSECURE="" in /var/yp/Makefile.yp.

A backup of the original template Makefile.yp is placed at /var/yp/Makefile.yp.dist
at system install time, in case you need to recover a vanilla configuration.

3. Create the source directory and populate it with the configuration files you need. See Makefile.yp
(8) to learn which YP maps require which source files. For the format of the individual
configuration files, refer to passwd(5), group(5), hosts(5) and so on, and look at the examples in /
etc.

4. Initialise the YP server using the interactive command

ypinit -m

At this point, it is not necessary to specify slave servers yet. To add slave servers, you can rerun
ypinit(8) later, using the -u option. Setting up at least one slave server for each domain is useful to
avoid service interruptions, should the master server ever go down or lose network connectivity, in
particular since client processes trying to access YP maps block indefinitely until they receive the
requested information. Thus, YP service interruptions typically render the client hosts completely
unusable until YP is back to service.

Note that changes made to /var/yp/Makefile.yp after running ypinit -m have no effect
because ypinit -m copies the template to /var/yp/`domainname`/Makefile. While
most of the database files in /var/yp/`domainname` can easily be recreated using this new
Makefile, there is one exception: The file ypservers.db, listing all YP master and slave servers
associated with the domain, is created directly from ypinit -m and modified exclusively by
ypinit -u. Thus, take special care never to damage that particular file, lest you have to
regenerate it manually using makedbm(8), or reinitialise the server by rerunning ypinit -m.

5. YP uses rpc(3) (remote procedure calls) to communicate with clients, so it is necessary to enable
portmap(8). To do so, edit rc.conf.local(8) and set portmap=YES. This will start the portmapper
on next boot. You can avoid rebooting by also starting it manually:

echo "portmap=YES" >> /etc/rc.conf.local
portmap

6. Consider using either the securenet(5) or the ypserv.acl(5) security feature of the YP server
daemon. But be aware that both of these only provide IP based access control. Thus, they only help
as long as potential attackers have neither physical access to the hardware of the network segments
carrying your YP traffic nor root access to any host connected to those network segments.

http://www.openbsd.org/faq/faq10.html (28 of 31)4/29/2009 5:05:32 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=Makefile.yp&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=Makefile.yp&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=passwd&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=group&group=5
http://www.openbsd.org/cgi-bin/man.cgi?query=hosts&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=ypinit&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=makedbm&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=rpc&sektion=3
http://www.openbsd.org/cgi-bin/man.cgi?query=portmap&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=rc.conf.local&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=securenet&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=ypserv.acl&sektion=5

10 - System Management

7. Finally, start the YP server daemon:

ypserv

It will automatically be restarted at boot time as long as the directory /var/yp/`domainname`
continues to exist.

8. To test the new server, consider making it its own client, following the instructions in the first part
of the next section. In case you don't want the server to use its own maps, you can disable the client
part after the test with the following commands:

pkill ypbind
rm -rf /var/yp/binding

9. If you wish to allow users to change their passwords from client machines, then you must enable
yppasswdd(8):

echo 'yppasswdd_flags="-d /etc/yp/src/puffynet"' >> /etc/
rc.conf.local
rpc.yppasswdd

In case you left the source directory at the default /etc, just use yppasswdd_flags="".
10. Remember that each time you change a file sourced by a YP map, you must regenerate your YP

maps.

cd /var/yp
make

10.19.4 - Setting up a YP client

Setting up a YP client involves two distinct parts. First, you must get the YP client daemon running,
binding your client host to a YP server. Completing the following steps will allow you to retrieve data
from the YP server, but that data will not yet be used by the system:

1. Like on the server, you must set the domain name and enable the portmapper:

echo "puffynet" > /etc/defaultdomain
domainname `cat /etc/defaultdomain`
echo "portmap=YES" >> /etc/rc.conf.local
portmap

2. It is recommended to provide a list of YP servers in the configuration file /etc/yp/
`domainname`. Otherwise, the YP client daemon will use network broadcasts to find YP servers

http://www.openbsd.org/faq/faq10.html (29 of 31)4/29/2009 5:05:32 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=yppasswdd&sektion=8

10 - System Management

for its domain. Explicitly specifying the servers is both more robust and marginally less open to
attack. If you have not set up any slave servers, just put the host name of the master server into /
etc/yp/`domainname`.

3. The YP client daemon is called ypbind(8). Starting it manually will create the directory /var/yp/
binding, such that it will be automatically restarted at boot time.

ypbind

4. If all went well you should be able to query the YP server using ypcat(1) and see your passwd map
returned.

ypcat passwd
bob:*:5001:5000:Bob Nuggets:/home/bob:/usr/local/bin/zsh
...

Other useful tools for debugging your YP setup include ypmatch(1) and yptest(8).

The second part of configuring a YP client involves editing local configuration files such that certain YP
maps get used by various system facilities. Not all servers serve all standard maps supported by the
operating system, some servers serve additional non-standard maps, and you are by no means compelled
to use all those maps. Which of the available maps shall or shall not be used, and for which purposes they
shall be used, is fully at the discretion of the client host's system administrator.

For a list of standard YP maps and their standard usage, see Makefile.yp(8). The most common use cases
include:

● If you want to include all user accounts from the YP domain, append the default YP marker to the
master password file and rebuild the password database:

echo '+:*::::::::' >> /etc/master.passwd
pwd_mkdb /etc/master.passwd

For details on selective inclusion and exclusion of user accounts, see passwd(5). To test whether
inclusion actually works, use the id(1) utility.

● If you want to include all groups from the YP domain, append the default YP marker to the group
file:

echo '+:*::' >> /etc/group

For details on selective group inclusion, see group(5).
● If you are distributing hostnames via YP, you should now review resolv.conf(5) and check that the

name service lookup order is correct. Most users will require a line like this:

http://www.openbsd.org/faq/faq10.html (30 of 31)4/29/2009 5:05:32 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ypbind&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ypcat&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ypmatch&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=yptest&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=Makefile.yp&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=passwd&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=id&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=group&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=resolv.conf&sektion=5

10 - System Management

lookup file yp bind

[FAQ Index] [To Section 9 - Migrating to OpenBSD] [To Section 11 - The X Window System]

 www@openbsd.org
$OpenBSD: faq10.html,v 1.142 2009/04/11 14:15:31 schwarze Exp $

http://www.openbsd.org/faq/faq10.html (31 of 31)4/29/2009 5:05:32 PM

mailto:www@openbsd.org

11 - The X Window System

[FAQ Index] [To Section 10 - System Management] [To Section 12 - Hardware and Platform-Specific
Questions]

11 - The X Window System

Table of Contents

● 11.1 - Introduction to X
● 11.2 - Configuring X
● 11.3 - Configuring X on amd64 and i386
● 11.4 - Starting X
● 11.5 - Customizing X

11.1 - Introduction to X

The X Window System (sometimes just called "X", other times, incorrectly called "X Windows") is the
environment which provides graphics services to OpenBSD and other Unix-based systems. However, by
itself, X provides very little: one also must have a "Window Manager", to present a user interface. Most
of the "personality" one will feel from X will be due to the window manager, rather than X itself.
OpenBSD ships with a free version of the fvwm(1) window manager, although you may wish to use any
of the other window managers that are in packages. Search using a key of "window manager" for a
list of the many window managers available.

X is considered a "client-server" structured protocol, however the terminology is sometimes confusing.
The computer with the graphics on the screen is the "X Server". The application which directs the X
server what to put on its screen is the "X Client", even though it may be a much more powerful
computer in a data center. This model can be used to have large, processor intensive applications (X
clients) running on a very powerful machine, using the X Server running on a small, low power machine
on your desk for their user interface.

It is possible to run X clients on a system without any graphical support. For example, one could have an
application (the X client) running on an mvme88k, displaying its output on an alpha's graphical display

http://www.openbsd.org/faq/faq11.html (1 of 13)4/29/2009 5:05:35 PM

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=fvwm&sektion=1

11 - The X Window System

(the X server). Since X is a well-defined, cross-platform protocol, it is even possible to have an X
application running on (for example) a Solaris machine use an OpenBSD machine for its display.

The client and server can also be running on the same machine, and for most of this section, that will be
the assumption.

11.1.1 - How much computer do I need to run X?

X itself is a pretty large program, a fast computer will be appreciated if you are starting it and stopping it
regularly. However, once running, it performs pretty responsively on a very modest computer. To get
responsive display performance on some platforms, even for just text, you will want to run X. These
platforms, such as sparc and sparc64 were intended to be used with a graphical interface, and the text
console performance is very poor.

That being said, the point of running X is usually to run X applications. Some X applications are very
lean, others will seemingly take and use all the processor and RAM you can give them. Of course, some
users just like to use X to provide a large number of xterm(1)s, which can be done on very modest
hardware.

11.1.2 - Can I have any kind of graphics without X?

Assuming you won't accept ASCII graphics, that requires some kind of framebuffer console driver.
Some operating systems provide this, but there is not currently one for OpenBSD, nor is there much
interest among developers for one.

11.2 - Configuring X

The configuration of X varies considerably from platform to platform. In all cases, there will be
instructions and other platform-specific information in /usr/X11R6/README in the installed system.

Several platforms require the xf86(4) X aperture driver, which provides access to the memory and I/O
ports of a VGA board and the PCI configuration registers required by the X servers. This driver must be
enabled before it is used, either by answering "yes" to this question during install:

Do you expect to run the X window System [no]

or by changing the value of machdep.allowaperture to the appropriate non-zero value in /etc/
sysctl.conf for your platform, and rebooting the machine (this sysctl cannot be changed after boot
has been completed for security reasons). There are security implications to this, so do not do this if you
do not need it.

http://www.openbsd.org/faq/faq11.html (2 of 13)4/29/2009 5:05:35 PM

http://www.openbsd.org/sparc.html
http://www.openbsd.org/sparc64.html
http://www.openbsd.org/cgi-bin/man.cgi?query=xterm&sektion=1
http://en.wikipedia.org/wiki/ASCII_Art
http://www.openbsd.org/cgi-bin/man.cgi?query=xf86&sektion=4

11 - The X Window System

11.2.1 - alpha

/usr/X11R6/README for alpha.

Set machdep.allowaperture=1 in /etc/sysctl.conf.

The TGA and some VGA cards are supported. No further configuration should be needed.

11.2.2 - amd64

/usr/X11R6/README for amd64.

Set machdep.allowaperture=2 in /etc/sysctl.conf.

X on amd64 often auto-configures very successfully, so no further configuration is needed in many
cases. If further configuration is needed, use the X -configure process below.

11.2.3 - armish

No X servers, only X clients.

11.2.4 - hp300

/usr/X11R6/README for hp300.

11.2.5 - hppa

No X server, only X clients.

11.2.6 - i386

/usr/X11R6/README for i386.

Set machdep.allowaperture=2 in /etc/sysctl.conf.

Due to the incredibly wide range of video cards, mice, keyboards, and other hardware, configuring an
i386 system to run X can be exciting. Exciting enough that a separate section is provided.

Fortunately, things are not always as bad as they may seem -- in many cases, X "Just Works" by

http://www.openbsd.org/faq/faq11.html (3 of 13)4/29/2009 5:05:35 PM

http://www.openbsd.org/cgi-bin/cvsweb/~checkout~/xenocara/distrib/notes/README.alpha
http://www.openbsd.org/cgi-bin/cvsweb/~checkout~/xenocara/distrib/notes/README.amd64
http://www.openbsd.org/cgi-bin/cvsweb/~checkout~/xenocara/distrib/notes/README.hp300
http://www.openbsd.org/cgi-bin/cvsweb/~checkout~/xenocara/distrib/notes/README.i386

11 - The X Window System

invoking "startx". In these cases, your hardware will be detected and queried for its abilities, and X will
run very well.

11.2.7 - landisk

No X servers, only X clients.

11.2.8 - luna88k

No X servers, only X clients.

11.2.9 - mac68k

No X servers, only X clients.

11.2.10 - macppc

/usr/X11R6/README for macppc.

Set machdep.allowaperture=2 in /etc/sysctl.conf.

Supported Macintosh PPC systems can be run in one of two different ways: "accelerated" and
"framebuffer" (unaccelerated).

In the "framebuffer" mode, the system will be running with 8 bits per pixel, and the video resolution is
controlled by the Macintosh environment, so you will probably want to keep a small MacOS section on
your disk to adjust these settings. This mode has the advantage of "Just Working", however it can be
frustratingly inflexible (for example, altering resolution may require booting MacOS).

If your Macintosh has an ATI-based video system, it can run using an accelerated X server, which gives
better performance and more control in the OpenBSD environment. The NVIDIA video cards in some
macppc systems will also work in many cases. The README file has details on configuring the
accelerated driver, start using the sample file there.

While the README file details using the standard Apple one-button mouse with X, unless you are
using a laptop, it is highly recommended that you just buy a modern third-party USB mouse.

11.2.11 - mvme68k

No X servers, only X clients.

http://www.openbsd.org/faq/faq11.html (4 of 13)4/29/2009 5:05:35 PM

http://www.openbsd.org/cgi-bin/cvsweb/~checkout~/xenocara/distrib/notes/README.macppc

11 - The X Window System

11.2.12 - mvme88k

No X servers, only X clients.

11.2.13 - sgi

No X servers, only X clients.

11.2.14 - sparc

/usr/X11R6/README for sparc.

With a single supported framebuffer, there is no configuration needed. If you wish to use a multi-headed
configuration, see the above README file for details.

Resolution is controlled by the firmware before booting OpenBSD.

11.2.15 - sparc64

/usr/X11R6/README for sparc64.

There are a number of variations on these machines, you will need to know what kind of bus your
system has (PCI or SBus), what kind of port your mouse is attached to (zstty, com, or USB/PS2), and
what kind of video card you have. Start with the sample xorg.conf file in the README file, then
modify as indicated for your actual hardware and need. Do not expect the sample file to work unmodified
on your machine!

11.2.16 - vax

/usr/X11R6/README for vax.

The X server currently only works on VAXstation 4000 models with either a lcg(4) or lcspx(4)
framebuffer.

11.2.17 - zaurus

/usr/X11R6/README for zaurus.

No configuration needed, X "Just Works".

http://www.openbsd.org/faq/faq11.html (5 of 13)4/29/2009 5:05:35 PM

http://www.openbsd.org/cgi-bin/cvsweb/~checkout~/xenocara/distrib/notes/README.sparc
http://www.openbsd.org/cgi-bin/cvsweb/~checkout~/xenocara/distrib/notes/README.sparc64
http://www.openbsd.org/cgi-bin/cvsweb/~checkout~/xenocara/distrib/notes/README.vax
http://www.openbsd.org/cgi-bin/man.cgi?query=lcg&sektion=4&arch=vax
http://www.openbsd.org/cgi-bin/man.cgi?query=lcspx&sektion=4&arch=vax
http://www.openbsd.org/cgi-bin/cvsweb/~checkout~/xenocara/distrib/notes/README.zaurus

11 - The X Window System

11.3 - Configuring X on amd64 and i386

The variety of hardware options on these platforms makes the X configuration process "tricky".

11.3.1 - X.Org configuration

X.Org has made great improvements in making their servers "Just Work". In many cases, it does Just
Work without any /etc/X11/xorg.conf file. But not always, and sometimes, you need to
customize something that does work, anyway.

There are two programs that can be used to semi-automatically create a configuration file for X.Org's
i386 X servers. Unfortunately, neither of them are guaranteed to create a usable xorg.conf file.

● Xorg(1) run in the "X -configure" mode will load all available video driver modules, probes for
other hardware, and based on what it finds, writes out a xorg.conf file that may or may not work,
but even if it does not work it may be a useful starting point for creating one from scratch.

● xorgconfig is another program that attempts to interactively create a xorg.conf file, in a purely
text-based application.

In addition to the above applications, another time-honored way to configure X is to use your favorite
search engine to hunt for someone else who already solved your problem. While that's not a bad way,
that method won't be emphasized here.

11.3.2 - Our example machine

As a demonstration of setting up X, we will use an old Celeron 400MHz system, with an AGP video
slot. The video card is an old AGP card, shown in the dmesg as:

vga1 at pci1 dev 0 function 0 "3DFX Interactive Banshee"
rev 0x03

This is a once high-end video card, with 16M RAM, but is now mostly unsupported on modern versions
of "mainstream" operating systems. The monitor attached to the system is a Sony Multiscan G400 19"
CRT monitor, and it would be nice to run this monitor at 1280x1024, with a decent refresh rate, and 24
bit color.

First, after installing OpenBSD with X (and making sure the aperture driver is enabled in the kernel),
let's see what X.Org's auto detection and configuration does, after all, we might get lucky. So, we simply
log in and use the command startx(1). The screen goes blank for a few moments, then we get the X
"checkerboard" background, the "X" cursor, and then an xterm window.

http://www.openbsd.org/faq/faq11.html (6 of 13)4/29/2009 5:05:35 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=Xorg&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=xorgconfig&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=startx&sektion=1

11 - The X Window System

It works!

More or less. While the system is fully functional, it doesn't appear to have picked up any of the
capabilities of the monitor, and is running at what is clearly a low resolution (640x480). We hope to do
better than this. Much better, in fact. This does mean we need to make our own xorg.conf file, however.

Let's use the "X -configure" process to generate a starting xorg.conf file. You will need to do this as
root:

X -configure
 [...]
Your xorg.conf file is /root/xorg.conf.new

To test the server, run 'X -config /root/xorg.conf.new'

By the way, the message is serious -- use the entire path to your xorg.conf.new file, even if it is
sitting in your current default directory. Failing to do so will result in X(7) not finding the file, and it
will silently use the default configuration, which may have nothing to do with the file you are currently
working with. This can set back your troubleshooting quite a bit. Trust us on this.

Let's do as it says, and see what we get:

X -config /root/xorg.conf.new

Now, all we get is a black screen. Things had started out so well...

This might be a really good time to talk about ways of exiting X when started in this way. In order of
preference:

● CTRL-ALT-Backspace: This hopefully causes X to immediately terminate, along with all X
applications that are running. Of course, during the configuration process, you don't have any
applications running, so this is not a problem (and in fact, at this point, this is your best way to
exit X).

● SSH into the box, and "pkill Xorg", which may kill the X process, and may return you to a
usable console.

● SSH into the box and reboot it.
● Reset or power button. Sometimes things go really bad. Yes, it is usually good to get X running

before you load critical applications on the system. Sometimes, a bad X configuration will hang
the entire machine to the point that only a hard reset will resolve the problem.

Fortunately for us, CTRL-ALT-Backspace does the job here, and we are returned to a command prompt.

http://www.openbsd.org/faq/faq11.html (7 of 13)4/29/2009 5:05:35 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=X&sektion=7
http://www.openbsd.org/cgi-bin/man.cgi?query=pkill&sektion=1

11 - The X Window System

So now we need to see if we can figure out what is wrong. First, we should look at what Xorg thinks is
going on, and that is recorded in the file /var/log/Xorg.0.log. In this case, it appears that X
thinks all is running fine, there are no obviously significant errors shown in the log (lines that start with
an "(EE)" are errors).

Here is where knowing your hardware comes in handy. Attaching this system to a different monitor
while it is showing the blank screen produces a "Sync. Out of Range" message on the display. So,
apparently the configuration X gave us will not run on this monitor, and may not run on ANY monitor,
if a video mode was selected that isn't possible for this particular card (keep in mind, X is looking at the
chips on the card, and what they are potentially capable of, not how the manufacturer put it all together).
Different monitors will do different things when the timing is way off, some will attempt to display what
they can, others will drop to power saving mode, some will make horrible noises, some will display
useful messages on the screen. This monitor seems to do none of the above. A note is made to NOT use
this monitor for initial X configuration in the future.

Looking through the generated xorg.conf.new file, we see this:

Section "Monitor"
 #DisplaySize 370 270 # mm
 Identifier "Monitor0"
 VendorName "SNY"
 ModelName "SONY CPD-G400"
 ### Comment all HorizSync and VertSync values to use DDC:
 HorizSync 30.0 - 107.0
 VertRefresh 48.0 - 120.0
 Option "DPMS"
EndSection

As a test, let's try using DDC ("Data Display Channel", a way the monitor can tell the computer and
video card what it is capable of), and see what happens. This time, we get the X mesh pattern and the
moving cursor, which is all we expect when invoking X in this way (we terminate X using the CTRL-
ALT-Backspace trick above). It is (again) a very low resolution, but it is working, so we can be pretty
sure we have a timing and resolution problem. We'll restore the "HorizSync" and "VertRefresh" lines as
they were, as we have verified this monitor's specs through a bit of Internet searching.

Let's try to force Xorg to a particular resolution, and see if we have any luck. In the Section
"Screen" part of the xorg.conf file, we want to add a couple lines. The added lines are shown in bold:

Section "Screen"
 Identifier "Screen0"
 Device "Card0"
 Monitor "Monitor0"

http://www.openbsd.org/faq/faq11.html (8 of 13)4/29/2009 5:05:35 PM

11 - The X Window System

 DefaultDepth 24
 SubSection "Display"
 Viewport 0 0
 Depth 1
 EndSubSection
 SubSection "Display"
 Viewport 0 0
 Depth 4
 EndSubSection
 SubSection "Display"
 Viewport 0 0
 Depth 8
 EndSubSection
 SubSection "Display"
 Viewport 0 0
 Depth 15
 EndSubSection
 SubSection "Display"
 Viewport 0 0
 Depth 16
 EndSubSection
 SubSection "Display"
 Viewport 0 0
 Depth 24
 Modes "1280x1024"
 EndSubSection
EndSection

These two changes tell X we want to use a 24 bit display depth, and for 24 bit depths, we want the
resolution 1280x1024. As no other resolution is listed for "Depth 24", the system will be forced to that
resolution.

We test as above, and... SUCCESS! We have what appears to be a very nice, high resolution display.
Note that ALL that is expected is a mesh pattern (very good for seeing how good your monitor
REALLY is and also great for calibrating LCD displays, called the "root weave") and a movable cursor.
It is not intended to be functional at this point.

Now, we want to install this xorg.conf file so we can see how well we are really doing with usable
running of X.

cp xorg.conf.new /etc/X11/xorg.conf

http://www.openbsd.org/faq/faq11.html (9 of 13)4/29/2009 5:05:35 PM

http://www.openbsd.org/cgi-bin/cvsweb/xenocara/data/bitmaps/root_weave

11 - The X Window System

We can now try X using the normal startx(1) command. It works!

It would probably be good to verify that we are at the resolution and color depth we desire, and also that
we are running at a respectable refresh rate. We can do that with the xrandr(1) and xdpyinfo(1)
commands. Among other things, xdpyinfo(1) tells us:

 [...]
screen #0:
 print screen: no
 dimensions: 1280x1024 pixels (433x347 millimeters)
 resolution: 75x75 dots per inch
 depths (7): 24, 1, 4, 8, 15, 16, 32
 root window id: 0x44
 depth of root window: 24 planes
 [...]

So, yes, we are running at 1280x1024 with a depth of 24 planes (bits).

xrandr(4) tells us:

 SZ: Pixels Physical Refresh
*0 1280 x 1024 (433mm x 347mm) *85 75 60
 1 1280 x 960 (433mm x 347mm) 85 60
 [...]

which tells us we are running with an 85Hz refresh rate, so this should be a very comfortable setting for
most users.

11.3.3 - What if it isn't that "easy"?

Sometimes, things just don't go together. Here are some tips.

● Read the man page for the X server you are using. In our example, the /var/log/Xorg.0.
log file, we can see X is using TDFX as the driver, so that would be the tdfx(4) man page. You
will often find tips, limitations, and options for configuring your video card. These vary from
driver to driver, so don't assume you don't need to read the man page for the driver you are using
now because you read a different one before.

● Try different monitors. As we discovered in our above example, different monitors will often
give different clues as to what might be wrong.

● Try the vesa(4) X driver. This is definitely a "last choice" for performance reasons, but it works
on almost all video cards, including those for which none of the "better" X server drivers will

http://www.openbsd.org/faq/faq11.html (10 of 13)4/29/2009 5:05:35 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=xrandr&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=xdpyinfo&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=tdfx&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=vesa&sektion=4

11 - The X Window System

work with.
● Use different hardware. If you have choice on the video card to use, try some others.

11.4 - Starting X

There are two common ways to run X:

11.4.1 - On Demand:

Log in to a console as normal, then run startx(1).

11.4.2 - Boot directly into X:

This is done using xdm(1), the X Display Manager. xdm(1) is started as root, normally by rc, and
presents a login prompt. Upon successful login, it starts an X session for that user. If or when that X
session should be terminated (including by hitting CTRL-ALT-Backspace), xdm(1) will return,
prompting the user to login again. For this reason, do NOT attempt to start xdm(1) from /etc/rc.
conf.local until you have verified X works as you wish, or your machine may become very difficult
to manage! (worst case: boot single user, as if you lost your password, and edit out the xdm_flags line in
your /etc/rc.conf.local file.)

On some platforms, you will need to disable the console getty(8) to use xdm(1).

11.5 - Customizing X

11.5.1 - Introduction

OpenBSD's default X environment is fully functional, but you may wish to customize it. You may wish
to change the background pattern or color, or you may wish to change the Window Manager (the
program that most defines your X environment), or change the applications that are started when X
starts.

The default window manager in OpenBSD is fvwm(1). Fvwm is a good, general purpose window
manager, but it is hardly your only choice; it isn't even the only window manager included with
OpenBSD (see cwm(1) and twm(1)). A large number of window managers are also available through
packages.

Similar to the the system startup script, X has a process it goes through to set up the user environment.
More accurately, it has more than one process; which is used depends on how you start X.

http://www.openbsd.org/faq/faq11.html (11 of 13)4/29/2009 5:05:35 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=startx&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=xdm&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=getty&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=fvwm&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=cwm&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=twm&sektion=1

11 - The X Window System

Understanding how X starts will help you understand how to customize your work environment the way
you wish it to be.

Note that you can customize the environment on both a system-wide and user level. It is probably best to
do user level changes rather than to change the system defaults, as the user scripts are stored in the user's
home directory, so you will have less merging of files to do when upgrading to the your version of
OpenBSD. The system-wide defaults are in /etc/X11 and were initially loaded from xetcXX.tgz,
which is not reloaded by the suggested upgrade process, so if you make system-wide changes, they will
persist, but you may need to merge those changes into later versions of those files.

11.5.2 - startx(1) startup

startx(1) looks for the file .xinitrc in the user's home directory. .xinitrc is usually a shell script,
which can start as many X "client" (applications that use X) programs as desired. When this script exits,
the X server shuts down. Generally, most of the programs run by this script should run in the
background, though the last one should run in the foreground (typically the window manager), when it
exits, the script will exit, and X will be shutdown.

In the simplist case, this can be as little as just the name of the window manager you wish to invoke:

cwm

Or you can get a little more fancy:

xconsole -geometry -0+0 -fn 5x7 &
oclock -geometry 75x75-0-0 &
xsetroot -solid grey &
cwm

That will start the xconsole(1) which provides a copy of any text that the kernel would have sent to the
console (which is now covered by the graphical screen), an analog clock, oclock(1), and sets the
background to a solid grey background with xsetroot(1) all before invoking the cwm(1) window
manager. Note that only the window manager is not "backgrounded" with an "&" character. This means
that X will stay running until cwm(1) exits.

If a user's home directory does not have a .xinitrc file in it, the system's /etc/X11/xinit/
xinitrc file is used. This file can provide you some additional ideas for your .xinitrc script.

11.5.3 - xdm(1) startup

xdm(1) is usually started by the system startup scripts, but for testing purposes (recommended, until you

http://www.openbsd.org/faq/faq11.html (12 of 13)4/29/2009 5:05:35 PM

http://www.openbsd.org/faq/upgrade44.html
http://www.openbsd.org/cgi-bin/man.cgi?query=xconsole&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=oclock&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=xsetroot&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=cwm&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=xdm&sektion=1

11 - The X Window System

know your have your X config right!), it can be run as root.

xdm(1) has a lot of other functionality that won't be touched on here, but for our purposes, xdm will
present the user with a login screen, get and verify a user name and password, and then give the user
their X environment. When X shuts down, either deliberately or accidently, xdm will start it back up
again. This is why you want to make sure X is configured properly before using xdm(1), and certainly
before having xdm(1) start at boot, otherwise, you may have some difficulty getting control of the
machine.

When xdm(1) starts, it runs the /etc/X11/xdm/Xsession, which will check to see if the user has
a .xsession file in their home directory. So, if you wish to change your default window manager,
simply invoke it (and maybe other things) in .xsession. Again, any programs you want started with
X (for example, maybe three xterm(1)s) can be placed here, but all should be backgrounded except for
your window manager, as again, when that exits, your X session will be ended. In this case, xdm(1) will
restart X and bring you back to a login screen.

11.5.4 - Trying a new window manager

You can invoke a particular window manager when you load X without altering any defaults like this:

$ startx /usr/local/bin/fluxbox

Several window managers (including cwm(1) and fvwm(1)) offer the ability to change window
managers on the fly, without restarting X or any of your applications. Your new window manager
replaces your old one, exiting the newly loaded window manager terminates X, it does not return you
back to your previous window manager. fvwm(1) allows you to start a different window manager by left
clicking on the background ("root window"), chose "(Re)Start", then pick your preferred window
manager (however, note that you will need to add your alternative window managers to your .fvwmrc
file (the system-wide default is /usr/X11R6/lib/X11/fvwm/.fvwmrc)). cwm(1) allows you to
invoke another window manager by hitting Ctrl-Alt-w, and typing in the manager you wish to switch to.

Once you have found a window manager you like, you can set it as the final program run by your startup
scripts as described above.

[FAQ Index] [To Section 10 - System Management] [To Section 12 - Hardware and Platform-Specific
Questions]

 www@openbsd.org
$OpenBSD: faq11.html,v 1.78 2009/02/22 16:57:42 nick Exp $

http://www.openbsd.org/faq/faq11.html (13 of 13)4/29/2009 5:05:35 PM

mailto:www@openbsd.org

12 - Hardware and Platform-Specific Questions

[FAQ Index] [To Section 11 - The X Window System] [To Section 13 - Multimedia]

12 - Hardware and Platform-Specific Questions

Table of Contents

● 12.1 - General hardware notes
❍ 12.1.1 - PCI
❍ 12.1.2 - ISA
❍ 12.1.3 - A device is "recognized" but says "not configured" in dmesg
❍ 12.1.4 - I have a card listed as "supported", but it doesn't work!
❍ 12.1.5 - Are WinModems supported?
❍ 12.1.6 - What happened to the Adaptec RAID support (aac)?
❍ 12.1.7 - My ami(4) card will only support one logical disk!

● 12.2 - DEC Alpha
● 12.3 - AMD 64

❍ 12.3.1 - Can I run OpenBSD/amd64 on my Intel P4?
❍ 12.3.2 - Can I run my i386 binary on OpenBSD/amd64?
❍ 12.3.3 - Is it always better to run OpenBSD/amd64 on processors that support it?

● 12.4 - ARM-based appliances
● 12.5 - HP 9000 series 300, 400
● 12.6 - HP Precision Architecture (PA-RISC)
● 12.7 - i386

❍ 12.7.1 - ISA NICs
❍ 12.7.2 - OpenBSD won't work on my 80386/80386SX/80486SX system
❍ 12.7.3 - My dmesg shows multiple devices sharing the same interrupt
❍ 12.7.4 - My keyboard/mouse keeps locking up (or goes crazy)!
❍ 12.7.5 - My Soekris performs poorly
❍ 12.7.6 - I get "missing interrupt" errors on my CF device

● 12.8 - Landisk
● 12.9 - Luna88k
● 12.10 - Mac68k
● 12.11 - MacPPC

http://www.openbsd.org/faq/faq12.html (1 of 11)4/29/2009 5:05:40 PM

http://www.openbsd.org/index.html

12 - Hardware and Platform-Specific Questions

❍ 12.11.1 - My bm(4) network adapter doesn't work!
● 12.12 - MVME68k
● 12.13 - MVME88k
● 12.14 - SGI
● 12.15 - SPARC
● 12.16 - UltraSPARC

❍ 12.16.1 - My UltraSPARC won't boot from the floppy image
❍ 12.16.2 - I'm getting "partition extends past end of unit" messages in disklabel

● 12.17 - DEC VAX
❍ 12.17.1 - Can I use the SIMH VAX simulator?

● 12.18 - Sharp Zaurus
❍ 12.18.1 - USB devices aren't working properly

12.1 - General hardware notes

12.1.1 - PCI devices

● PCI devices are mostly self-configuring -- the computer and OS will allocate resources to the
cards as required.

● Interrupts can be shared on the PCI bus. Not only can they be, the system will often perform
better when the IRQs are shared, especially on i386 systems.

● There are several different PCI bus standards. You will occasionally find a PCI2.2 specification
card that will just not work in a PCI2.1 specification system. Also, many cards with on-board
bridges (such as, multi-port network cards) will not work well in older systems.

● The PCI bus supports two levels of signaling, 3.3V and 5V. Cards that work with 3.3V signaling
have a second notch cut in their PCI connector. Most PCI cards use 5V signaling, which is used
by most computers. The Soekris single-board computers (Net45x1 and Net4801) are commonly-
encountered computers that only support 3.3V signaling.

12.1.2 - ISA devices

● ISA devices cannot share resources, and in general, must be manually configured to settings that
don't conflict with other devices in the system.

● Some ISA devices are "Plug and Play" (isapnp(4)) -- if you have any problem with these devices,
though, verify their configuration in your dmesg(8), ISAPnP doesn't always work as desired.

● In general, if you have a choice, most people are best advised to avoid ISA cards in favor of PCI.
ISA cards are more difficult to configure and have a much greater negative impact on the
system's performance.

http://www.openbsd.org/faq/faq12.html (2 of 11)4/29/2009 5:05:40 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=isapnp&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=dmesg&sektion=8

12 - Hardware and Platform-Specific Questions

12.1.3 - My device is "recognized" but says "not configured" in dmesg

In short, it means your device is not supported by the kernel you are using, so you will not be able to use
it.

PCI and many other types of devices offer identifying information so that the OS can properly recognize
and support devices. Adding recognition is easy, adding support is often not. Here is part of a dmesg
with two examples of "not configured" devices:

...
vendor "Intel", unknown product 0x5201 (class network
subclass ethernet,
rev 0x03) at pci2 dev 9 function 1 not configured
...
"Intel EE Pro 100" rev 0x03 at pci2 dev 10 function 0 not
configured
...

The first one (a network adapter) had its vendor code identified and the general type of card was
determined, but not the precise model of the card. The second example was another network adapter,
this one a developer had seen and had entered into the identification file that is used to identify the card.
In both cases, however, the cards will be non-functional, as both are shown as "not configured",
meaning no driver has attached to the card.

What can I do about a not configured device?

● If the device or card you are seeing is not one you need, you can safely ignore the "not
configured" devices, they will not hurt your system. Some "special purpose" devices are
deliberately left unconfigured so the system's BIOS will handle them.

● In some cases, it is just a variation of an already supported device, in which case, it may be
relatively easy for a developer to add support for the new card. In other cases, it may be a totally
unsupported chip set or implementation (such as the above examples). In that case, a new driver
would have to be written, which may not even be possible if the device is not fully documented.
You are certainly welcome to write a driver for the device yourself.

● If you are running an install kernel, the device may not be supported by the install media you
used, but may be supported by a different boot disk. This is a common with users of some
popular SCSI cards who misread the footnotes on the i386 platform page and try all the boot
floppies their SCSI card is NOT supported on, rather than the one that it is supported on.

● If you are running a modified kernel, you may have removed support for a device you now need.
In general, removing devices from a kernel is a bad idea. This is one reason why.

● Before reporting a "not configured" device, make sure you have first tested the most recent

http://www.openbsd.org/faq/faq12.html (3 of 11)4/29/2009 5:05:40 PM

http://www.openbsd.org/i386.html

12 - Hardware and Platform-Specific Questions

snapshot, as support may already have been added, and check the mail list archives to see if the
issue has been discussed already. Remember, however, if you are using an older version of
OpenBSD, you will generally have to upgrade to get the benefit of any new driver written.

12.1.4 - I have a card listed as "supported", but it doesn't work!

Unfortunately, many manufacturers use product model numbers to indicate marketplace position, rather
than the technical nature of a product. For this reason, you may buy a product with the same name or
model number as a product listed in the platform pages, but end up with a totally different product that
may not work with OpenBSD. For example, many early wireless network adapters were based on the
Prism2 chip set, using the (wi(4)) driver, but later, when lower-cost chips became available, many
manufacturers changed their product to use chips for which no open source drivers exist, but never
changed their model numbers. Wireless network adapters, unfortunately, are far from the only example
of this.

12.1.5 - Are WinModems supported?

WinModems are low-cost modems which rely on the processor to do much of the signal processing
normally done in hardware in a "real" modem. Due to the variety of incompatible and typically
undocumented WinModem chips, there is no support for WinModems in OpenBSD, and this is not
likely to change.

12.1.6 - What happened to the Adaptec RAID support (aac)?

Adaptec has refused to provide useful and accurate documentation about their FSA-based (aac(4)) RAID
controllers. As these RAID controllers seem to be very buggy, this documentation is critical for a useful
driver. Since this driver was so unreliable, it was removed from the GENERIC kernel.

I can compile my own kernel with aac(4) support, right?

Sure. But what part of "unreliable" did you fail to understand? This isn't an "experimental" feature, this
is a known-flawed driver. Maybe it works with some variations of hardware sufficiently well to be
usable, but we don't recommend betting your data on it.

12.1.7 - My ami(4) card will only support one logical disk!

There is a known bug with ami(4) which will cause data corruption if you use more than one volume on
some controllers. On controllers with this issue, OpenBSD will limit you to one logical disk, resulting in
a message in your dmesg that looks like:

http://www.openbsd.org/faq/faq12.html (4 of 11)4/29/2009 5:05:40 PM

http://www.openbsd.org/mail.html
http://www.openbsd.org/plat.html
http://www.openbsd.org/cgi-bin/man.cgi?query=wi&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=aac&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=ami&sektion=4

12 - Hardware and Platform-Specific Questions

ami0: FW A.04.03, BIOS vA.04.03, 4MB RAM
ami0: 3 channels, 16 targets, 2 logical drives
ami0: firmware buggy, limiting access to first logical disk
scsibus0 at ami0: 1 targets

12.2 - DEC Alpha

[nothing yet]

12.3 - AMD 64

12.3.1 - Can I run OpenBSD/amd64 on my Intel P4

In the case of many recent processors, the answer is "yes". Unfortunately, trying to find out which Intel
processor variations do and which do not properly support the amd64 instruction set is difficult. It is
usually easier to just try it and see if it works.

12.3.2 - Can I run my i386 binary on OpenBSD/amd64?

No.

OpenBSD/amd64 is a totally separate platform from OpenBSD/i386, and at this point, no binary
compatibility is provided. As OpenBSD encourages open source applications, there is not much interest
in binary compatibility across platforms with developers.

Note that the OpenBSD/amd64 and OpenBSD/i386 boot loaders will load each other's kernels, making it
easier to reinstall a system with the "other" platform. However, it has to be a complete "wipe and
reinstall" operation -- left-over binaries from the "previous" installation will most likely make your life
unpleasant.

12.3.3 - Is it always better to run OpenBSD/amd64 on processors that
support it?

Not always.

There are a number of reasons one may desire to use OpenBSD/i386 over OpenBSD/amd64, even on
hardware that supports amd64 code:

● Need for i386 binary (or other OS) compatibility.
● Need to run applications that are not "64 bit clean".

http://www.openbsd.org/faq/faq12.html (5 of 11)4/29/2009 5:05:40 PM

12 - Hardware and Platform-Specific Questions

● Need for ability to move disks to another machine that isn't amd64 capable
● For some applications and on some hardware, OpenBSD/i386 may outperform OpenBSD/amd64.

Relatively few people will ever experience this, and work is on-going to eliminate as many of
these situations as possible.

12.4 - ARM-based appliances

[nothing yet]

12.5 - HP300

[nothing yet]

12.6 - HPPA

[nothing yet]

12.7 - i386

12.7.1 - ISA NICs

As OpenBSD runs well on older hardware, users often will end up using ISA NICs on OpenBSD
systems. ISA hardware requires much more configuration and understanding than does PCI hardware. In
general, you can't just stuff the card in the computer and expect it to magically work. In many machines,
if your ISA device is not in a "Plug 'n' Play" (PNP) mode, you must reserve the resources the card uses
in the system's BIOS.

3Com 3C509B ep(4)

This is an excellent performing ISA NIC, supported by the ep(4) driver. The 'B' version can be
distinguished from the non-B version by labeling on the card and by the larger "main" chip on the board
(approximately 2.5cm on a side for the 'B' version, vs. 2cm on a side on the older version), and will
provide better performance on a loaded or dual network card system. The 3C509B ships configured in a
PNP mode, which unfortunately does not comply with standards, and causes problems in OpenBSD's
isapnp(4) support. The adapter is picked up first as a non-PNP device, then again after the PNP support
comes on-line, resulting in an extra NIC showing in the dmesg. This may work fine, or it may cause
other problems. It is highly recommended that the 3C509B cards have PNP mode disabled and manually
configured to non-conflicting settings using the 3Com DOS-based configuration utilities before
configuration.

http://www.openbsd.org/faq/faq12.html (6 of 11)4/29/2009 5:05:40 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ep&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=isapnp&sektion=4

12 - Hardware and Platform-Specific Questions

The ep(4) driver will pick the cards up at any hardware combination that does not conflict with other
devices in the system.

If you have multiple 3C509 cards in your system, it is recommended that you label the cards' spine with
the MAC address, and use the dmesg to identify which is which.

Note that the 3C509, the 3C905 and the 3C590 are often confused. The 3C509 is a 10Mbps ISA card,
the 3C905 and 3C590 are PCI cards.

NE2000

The original NE2000 NIC was developed in the mid-1980s by Novell. Since then, many manufacturers
have produced cards that are very similar, which are generally called NE2000-compatibles, or clones.
Performance of these clone cards varies greatly. While some older NE2000-compatible cards performed
very well, many of the currently-available ones perform poorly. NE2000-compatibles are supported by
the ne(4) driver in OpenBSD.

OpenBSD will handle some ISAPNP-capable NE2000-compatible cards well if the ISAPNP mode is
turned on. Other cards will have to be set using either jumpers or a DOS-based configuration utility.
Unfortunately, as the original NE2000 cards did not have software configuration or ISAPNP support,
there are no standards for this -- you need the utility that will have been originally supplied with your
specific card. This can often be difficult to obtain.

The ne(4) driver supports three configurations of the ISA NE2000 card in the GENERIC OpenBSD
kernel:

 ne0: port 0x240 irq 9
 ne1: port 0x300 irq 10
 ne2: port 0x280 irq 9

If these settings are not acceptable, you can adjust them using User Kernel Configuration (UKC) or by
building a customized kernel.

Note that the ne(4) driver is fairly "dumb" -- only the I/O port is probed, if any of the above I/O
addresses is detected, the corresponding IRQ is assumed. dmesg(8) will not reflect the actual IRQ of the
adapter in the case of ISA ne(4) drivers. If this is not the actual IRQ your card is set to, it will not work.

Note that there are non-ISA cards that use the ne(4) driver -- PCI and PCMCIA ne(4) cards exist. These
notes do not apply to them, these devices are auto-configuring.

12.7.2 - OpenBSD won't work on my 80386/80386SX/80486SX system!

http://www.openbsd.org/faq/faq12.html (7 of 11)4/29/2009 5:05:40 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ne&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=dmesg&sektion=8

12 - Hardware and Platform-Specific Questions

80386SX/DX

Support for the 80386DX and 80386SX processors was dropped beginning with OpenBSD 4.2. In
addition to limitations of the 80386 chip, the systems are just too slow and rarely had enough RAM and
a required FPU to run OpenBSD.

80486SX

The 80486SX chip was a "low-cost" version of the 80486, which lacked the hardware floating point
support (like the 80386) OpenBSD requires. Fortunately, full 80486DX chips are fairly available, and is
an easy upgrade in most systems.

The 80486DX and newer chips run OpenBSD fine.

12.7.3 - My dmesg shows multiple devices sharing the same Interrupt (IRQ)!

This is entirely acceptable, and in fact, even desirable for PCI devices. This is a design feature of the
PCI bus. Some people will say that sharing interrupt requests (IRQs) is bad, however they are either
confusing the situation with the ISA bus (where IRQ sharing is not permitted), or past experience with
broken hardware or software.

ISA devices can not share IRQs. If you find ISA devices sharing IRQs, you must correct this problem.

12.7.4 - My keyboard/mouse keeps locking up (or goes crazy)!

This is most often seen when using a "switch box" (sometimes called a "KVM switch") to attach
multiple computers to one keyboard, monitor and mouse. You can experiment with different brand and
design switch boxes, but OpenBSD seems to be more sensitive to switching the mouse than some other
operating systems. The problem is usually just the switching of the mouse. If you are not using the
mouse, the solution is simple: don't attach the mouse cable to the computer. If you are using the mouse,
an easy solution is "one mouse per computer", and switch just the keyboard and monitor. You may find
using a PS/2 Mouse -> USB port adapter (so OpenBSD sees a USB mouse) will work around this
problem. If you just want console access to the machine, you may wish to consider using a serial console
instead.

12.7.5 - My Soekris performs poorly

The Soekris machines are nice, low-power, small and modest cost PC class systems, and many
OpenBSD users are quite pleased with them. However, it must be remembered the processors, NICs, and
other devices on the system are all chosen for low power consumption, not performance. While they are

http://www.openbsd.org/faq/faq12.html (8 of 11)4/29/2009 5:05:40 PM

12 - Hardware and Platform-Specific Questions

suitable for many applications, they are not high performance machines.

12.7.6 - I get "missing interrupt" errors on my CF device

With some CF systems, such as early Soekris 4801 systems and some CF adapters, the DMA support is
not properly wired up, so you might see messages such as:

pciide0:0:0: bus-master DMA error: missing interrupt,
status=0x20

In these cases, you will need to disable DMA in the wd(4) driver to avoid this problem. This can be done
using ukc to install, then config(8) to change it permanently:

ukc> change wd
 42 wd* at wdc*|pciide* channel -1 flags 0x0
change [n] y
channel [-1] ?
flags [0] ? 0x0ff0
 42 wd* changed
 42 wd* at wdc*|pciide* channel -1 flags 0xff0
ukc> quit

12.8 - Landisk

[nothing yet]

12.9 - Luna88k

[nothing yet]

12.10 - Mac68k

[nothing yet]

12.11 - MacPPC

12.11.1 - My bm(4) network adapter doesn't work!

The bm driver, supporting the BMAC chip used on some MacPPC systems (including early iMacs) has

http://www.openbsd.org/faq/faq12.html (9 of 11)4/29/2009 5:05:40 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=wd&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=bm&sektion=4&arch=macppc

12 - Hardware and Platform-Specific Questions

issues. A usb NIC is recommended for these systems at this time.

12.12 - MVME68k

[nothing yet]

12.13 - MVME88k

[nothing yet]

12.14 - SGI

[nothing yet]

12.15 - SPARC

[nothing yet]

12.16 - UltraSPARC (sparc64)

12.16.1 - My UltraSPARC won't boot from the floppy image

Only the Ultra 1/1e and Ultra 2 can boot any OS from floppy disk. Use CD-ROM, Miniroot, or network
boot to do your installation instead.

12.16.2 - I'm getting "partition extends past end of unit" messages in
disklabel

On sparc and sparc64 systems, the BSD disklabel cannot describe a disk geometry larger than 8GB,
while individual disklabel entries can be larger.

Everytime you run disklabel(8), it performs some sanity checks of the disklabel entries against what it
thinks is the correct drive geometry, and since it sees a truncated geometry, it warns and will not let you
edit entries outside this 8GB area unless you tell it to use the real drive geometry. Do this using the 'g'
command of the command-driven editor of disklabel(8) and tell it to use the "[d]isk geometry":

disklabel -E wd0
Inside MBR partition 3: type A6 start 63 size 17912412
 [...]

http://www.openbsd.org/faq/faq12.html (10 of 11)4/29/2009 5:05:40 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=usb&sektion=4

12 - Hardware and Platform-Specific Questions

Initial label editor (enter '?' for help at any prompt)
> g
[d]isk, [b]ios, or [u]ser geometry: [d] d
> w
> q

You will still get the warning messages, but you can configure and use your disk as desired. A proper
solution would have to be compatible with existing systems already in use, plus be compatible with
Solaris running on disks larger than 8GB, but this has not been worked out yet.

12.17 - DEC VAX

12.17.1 - Can I use the SIMH VAX simulator?

Yes!

The SIMH VAX simulator can be used to effectively emulate a real VAX. Instructions can be found in
the OpenBSD/vax on SIMH page.

12.18 - Sharp Zaurus

12.18.1 - USB devices aren't working properly

The Zaurus has very little current available on its USB port, so many USB devices will not work if they
are directly attached to it. You will need to use a powered USB hub to run these devices.

[FAQ Index] [To Section 11 - The X Window System] [To Section 13 - Multimedia]

 www@openbsd.org
$OpenBSD: faq12.html,v 1.97 2009/03/18 01:42:36 nick Exp $

http://www.openbsd.org/faq/faq12.html (11 of 11)4/29/2009 5:05:40 PM

http://simh.trailing-edge.com/
http://www.openbsd.org/vax-simh.html
mailto:www@openbsd.org

13 - Multimedia

[FAQ Index] [To Section 12 - Hardware and Platform-Specific Questions] [To Section 14 - Disk Setup]

13 - Multimedia

Table of Contents

● 13.1 - How do I configure my audio device?
● 13.2 - Playing different kinds of audio
● 13.3 - How can I play audio CDs in OpenBSD?
● 13.4 - Can I use OpenBSD to record audio samples?
● 13.5 - What can I do if I have audio problems?
● 13.6 - How do I use my MIDI instruments?
● 13.7 - Tell me about Ogg Vorbis and MP3 encoding?
● 13.8 - How can I playback video DVDs in OpenBSD?
● 13.9 - How do I burn CDs and DVDs?

❍ 13.9.1 - Introduction and basic setup
❍ 13.9.2 - Writing CDs
❍ 13.9.3 - Writing DVDs

● 13.10 - But I want my media files in format FOO.
● 13.11 - Is it possible to play streaming media under OpenBSD?
● 13.12 - Can I have Java support in my web browser? (i386 & amd64 only)
● 13.13 - Can I have Flash support in my web browser? (i386 only)

13.1 - How do I configure my audio device?

The devices in OpenBSD that are related to audio are: /dev/audio, /dev/sound, /dev/
audioctl and /dev/mixer. For a good overview of the audio driver layer, please read the audio(4)
manual page.

All supported audio drivers are already included in the GENERIC kernel so there is no need for extra
configuration or installation of drivers. To find out about options for your specific sound chip, you must

http://www.openbsd.org/faq/faq13.html (1 of 24)4/29/2009 5:05:44 PM

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=audio&sektion=4

13 - Multimedia

find out which sound chip you have. Supported chips may be found on the hardware compatibility page
for your platform. When you already have OpenBSD running, look for a sound driver in the output of
the dmesg(8) command, and read its manual page to find more specific information like options and
other details about the driver. An example of an audio chip in a dmesg output is:

auich0 at pci0 dev 31 function 5 "Intel 82801BA AC97" rev
0x04: irq 10, ICH2 AC97
ac97: codec id 0x41445360 (Analog Devices AD1885)
ac97: codec features headphone, Analog Devices Phat Stereo
audio0 at auich0

OpenBSD base provides two tools for monitoring and configuring audio devices. audioctl(1) is used for
the audio processing parameters, such as encoding, sample rate and number of channels, while mixerctl
(1) is used for the mixing parameters, such as channel source, gain level and mute.

The following command uses audioctl(1) to display the default processing parameters of an audio
device.

$ audioctl -f /dev/audio
...

Note that -f /dev/audio was used explicitly. Opening /dev/audio causes the audio device to
reset to the default parameters, which is what we wanted to see.

audioctl(1) is also quite useful for exploring the capabilities of an audio device. For example, to see if
the device supports some common sample rates, you could simply try setting the playback rate:

$ audioctl play.rate=48000
play.rate: -> 48000
$ audioctl play.rate=44100
play.rate: -> 44100
$ audioctl play.rate=22050
audioctl: set failed: Invalid argument
$ audioctl play.rate=8000
audioctl: set failed: Invalid argument
$

This device supports 48000 and 44100 Hz playback rates, but not 22050 or 8000. Note that if a sample
rate is not supported, there is not always an error message, but the returned sample rate is not the one
that was desired.

http://www.openbsd.org/faq/faq13.html (2 of 24)4/29/2009 5:05:44 PM

http://www.openbsd.org/plat.html
http://www.openbsd.org/cgi-bin/man.cgi?query=dmesg&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=audioctl&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=mixerctl&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=mixerctl&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=audioctl&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=audioctl&sektion=1

13 - Multimedia

$ audioctl play.rate=48000
play.rate: -> 48000
$ audioctl play.rate=44100
play.rate: -> 48000
$ audioctl play.rate=22050
play.rate: -> 48000
$ audioctl play.rate=8000
play.rate: -> 48000
$

This device supports 48000 Hz playback only.

Audio hardware is usually capable of at least some minimal mixing. Running mixerctl(1) with no
arguments will list the device's mixer controls and current settings.

$ mixerctl
...

Some devices have only a handful of controls, some have a hundred or more. Note that not every option
of every audio chip necessarily reaches the outside world. So there may be, for example, more outputs
listed than are physically available on a sound card or motherboard.

There are a few controls that are common to many devices:

● outputs.master controls the playback output level
● inputs.dac controls the level from the DAC (digital to analog converter), used when playing

an audio file
● record.source controls what inputs are mixed into the ADC (analog to digital converter),

used when recording
● record.volume or record.record controls the input level of the ADC

The controls of an audio device may be labeled differently. For instance, there might not be an
outputs.master as above, but there is an outputs.outputs which does the same thing. Usually
the controls have a meaningful label, but sometimes one must simply try different settings to see what
effect each control has.

Some devices use what is known as EAPD, which stands for external amplifier power down. However,
this is just another on/off switch. It is probably refered to as "power down" because it is often used for
power saving, which means this type of control is more often found in laptops. Sometimes it is necessary
to set controls with eapd or extamp in their name to on to get an output signal.

As a basic example of common mixerctl usage, to set the volume of the left and right channels to 200,

http://www.openbsd.org/faq/faq13.html (3 of 24)4/29/2009 5:05:44 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=mixerctl&sektion=1

13 - Multimedia

you would issue

$ mixerctl outputs.master=200,200
outputs.master: 255,255 -> 207,207

Notice how the value becomes 207. The reason for this is that this audio device has an AC'97 codec,
which uses only 5 bits for volume control, leading to only 32 possible values. Other hardware could
have different resolution.

To unmute the master channel, you would do

$ mixerctl outputs.master.mute=off
outputs.master.mute: on -> off

To make the changes take affect on each reboot, edit /etc/mixerctl.conf, for example:

$ cat /etc/mixerctl.conf
outputs.master=200,200
outputs.master.mute=off
outputs.headphones=160,160
outputs.headphones.mute=off

13.2 - Playing different kinds of audio

Digitized audio

Lossless audio formats (AU, PCM, WAV, FLAC, TTA)

Some of the lossless audio formats may be played without the need for third party software, provided
they contain the uncompressed digital samples in chunks of bytes. These formats include Sun audio
(AU), raw PCM files (without headers), and RIFF WAV.

OpenBSD comes with aucat(1), a program for recording and playing uncompressed audio. The
following example will play a WAV file.

$ aucat -i filename.wav

aucat(1) supports both headerless and WAV audio files with the -i option. aucat also plays Sun audio
files where the audio data is encoded as 8 kHz monaural mulaw, which is the most common encoding
for this type of audio file.

http://www.openbsd.org/faq/faq13.html (4 of 24)4/29/2009 5:05:44 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=aucat&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=aucat&sektion=1

13 - Multimedia

It is also possible to play uncompressed audio data by passing it directly to the audio device. To do this,
you need to know its main parameters: encoding type, number of channels, sample rate, bits per sample.
If you don't know this, you might find out with the file(1) utility:

$ file music.au
music.au: Sun/NeXT audio data: 16-bit linear PCM, stereo,
44100 Hz

$ file music.wav
music.wav: Microsoft RIFF, WAVE audio data, 16 bit, stereo
44100 Hz

The only remaining things to know about these example files is that they use little-endian byte ordering
and signed linear quantization. You could figure this out by reading the header with hexdump(1). If you
are using a headerless (raw) file, there is no way to know the parameters beforehand. Set the following
parameters accordingly using audioctl(1).

play.encoding=slinear_le
play.rate=44100
play.channels=2
play.precision=16

Next, pass the audio file to the sound device:

$ cat music.au > /dev/sound

If you applied the correct settings, you should be hearing what you expected.

Note: Always use /dev/sound, not /dev/audio, if you want the settings you applied with audioctl
to stay in place.

There are other utilities you can use, such as audio/waveplay in packages and ports. Of course,
popular software like XMMS is also able to play these files, among other audio formats.

Apart from the above, there are audio formats which use lossless data compression. Examples are the
Free Lossless Audio Codec (FLAC) and TTA. The FLAC implementation has been ported to OpenBSD
and may be found under audio/flac in packages and ports.

Audio formats using lossy compression (Ogg Vorbis, MP3, WMA, AAC)

Lossy compression methods are often used for audio or other media files. The idea is that an amount of

http://www.openbsd.org/faq/faq13.html (5 of 24)4/29/2009 5:05:44 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=file&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=hexdump&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=audioctl&sektion=1

13 - Multimedia

data is thrown away during compression, but in such a way that the compressed result is still very usable
and has a good enough quality to be played. The advantage is that these techniques enable much higher
compression ratios, resulting in reduced disk space and bandwidth requirements.

A good example is the free, open and unpatented Ogg Vorbis format. To play Ogg Vorbis files, you can
use the ogg123 utility, which is bundled in the audio/vorbis-tools package. For example:

$ ogg123 music.ogg

Audio Device: Sun audio driver output

Playing: music.ogg
Ogg Vorbis stream: 2 channel, 44100 Hz
Time: 00:02.95 [02:21.45] of 02:24.40 (133.1 kbps) Output
Buffer 87.5%

Of course, Ogg Vorbis plugins exist for many other audio software.

Another example is the very popular MPEG-1 Audio Layer 3 (MP3) encoding, which has, however, its
share of licensing and patent issues. Many tools can play MP3 files, just have a look through the audio
section of the packages and ports system and pick one you like.

How about the proprietary Windows Media Audio (WMA) format? Files of this type can be played
using x11/mplayer which uses the FFmpeg framework.

A good starting point to learn more about different audio file formats is this Wikipedia article: Audio file
formats.

Synthesized sound

MIDI

The Musical Instrument Digital Interface (MIDI) protocol, is handled by MIDI devices. If you don't
have a MIDI synthesizer, but you wish to play a standard MIDI file (SMF), you can use software to
render MIDI data, generating audio files. By default, the audio/timidity port renders MIDI files
and play them on the audio device:

$ timidity file.mid

MOD

http://www.openbsd.org/faq/faq13.html (6 of 24)4/29/2009 5:05:44 PM

http://www.vorbis.com/
http://ffmpeg.sourceforge.net/
http://en.wikipedia.org/wiki/Audio_file_format
http://en.wikipedia.org/wiki/Audio_file_format

13 - Multimedia

A Soundtracker module is a binary format that mixes audio samples with sequencing orders, making it
possible to play rather long pieces of digital music with reasonably good quality.

The easiest way to play your favorite MOD files on OpenBSD is probably to use the XMMS software,
available through packages and ports. You should install the -mikmod subpackage for XMMS to let it
use the MikMod sound library, which supports the MOD, S3M, IT and XM module formats.

You will also find a number of so-called "trackers" in the audio section of the packages and ports
collection, e.g. tracker, soundtracker. With these trackers you can not only play but also generate your
own modules. Note, however, that not every tracker format is supported by the tools in the ports tree.
You are always welcome to submit a port of your favorite tracker software.

13.3 - How can I play audio CDs in OpenBSD?

It is possible to play audio CDs by either having the CD drive play the disc and send analog audio to the
sound card, or by reading the audio data and sending the digital samples to the sound card over the PCI
bus.

To play an audio CD using the analog output of your CD-ROM drive, you can

● Use the headphones output, usually at the front side of the drive.
● Connect the audio output at the back side to your audio card. Yes, this is a supplementary cable

next to the data (SCSI/IDE) and power cables.

A nice command line utility called cdio(1), has been included in the base system. Called without
parameters, it will enter interactive mode. If you want to play the CD right away, just enter

$ cdio play

This will play from the first CD-ROM drive, cd0, by default. Note that the user running cdio should
have permissions to read the CD-ROM device (e.g. /dev/rcd0c). As this device is only readable by
root or the operator group by default, for convenience you may want to add the user to the operator
group by adjusting this group's line in /etc/group. Alternatively, you can modify the file permissions
of the device as needed.

Note that you may need to unmute the CD input of the mixer. Just like the outputs, the actual name of
this input may vary between systems, but you will be using a command like:

$ mixerctl inputs.cd.mute=off

It is also possible that there is no analog audio connection between your CD drive and audio device. In

http://www.openbsd.org/faq/faq13.html (7 of 24)4/29/2009 5:05:44 PM

http://www.openbsd.org/porting.html
http://www.openbsd.org/cgi-bin/man.cgi?query=cdio&sektion=1

13 - Multimedia

this case you could use cdio's cdplay command to send the CD audio data to the sound card through
the PCI bus.

$ cdio cdplay

If you prefer a beautiful GUI, there are plenty of X11-based CD players in the packages and ports
collection. Just have a look in the audio section.

13.4 - Can I use OpenBSD to record audio samples?

Yes. Most devices support recording. aucat(1) comes with OpenBSD and can be used for recording.

$ aucat -o file.wav

The above command will start the recording of a file in WAV format. Press [CTRL]-C to finish the
recording. The file will contain signed 16-bit stereo samples, sampled at 44.1 kHz. Other sample
formats, sample rates and number of channels can be recorded. See the manual for more details.

Use aucat to play the file back:

$ aucat -i file.wav

If recording seemed to work, but playback of the recording was silent or not what was expected, the
mixer probably needs some configuration. Make sure that you select the right device to record from and
that the source is unmuted. You can set the necessary parameters using mixerctl(1). For example:

inputs.mic.mute=off
inputs.mic.preamp=on
inputs.mic.source=mic0
record.source=mic
record.volume=255,255
record.volume.mute=off
record.mic=255
record.mic.mute=off

These are settings for recording from a microphone. Pre-amplifying has been enabled, otherwise the
recorded sound can be pretty silent on some systems. However, pre-amplifying can also be quite loud on
other systems.

13.5 - What can I do if I have audio problems?

http://www.openbsd.org/faq/faq13.html (8 of 24)4/29/2009 5:05:44 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=aucat&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=mixerctl&sektion=1

13 - Multimedia

If you do not hear anything when playing audio, it's possible there is a mixer control turned to low or
simply muted. See section 13.1 - How do I configure my audio device for configuring the mixer. Please
unmute all inputs and outputs before reporting a problem.

If sound is distorted, it could be that your sound card only supports a single or limited set of sample
rates. See section 13.1 - How do I configure my audio device for examples of determining what
parameters your audio device supports.

If your device only supports on or a few sample rates, there are applications in the packages and ports
collection that perform rate resampling. This will allow you to play audio with different sample rates
than your device supports. For example, x11/mplayer has a "-srate" switch to specify a desired
output sample rate. You would set that to a rate your sound device supports. KDE's artsd and some
games support similar options. Read the documentation of your specific audio application to find out
whether it supports rate resampling.

Rate resampling can also be accomplished with aucat. For example:

$ mpg321 -s file.mp3 | aucat -r 22050 -i -

The above command will play 22050 Hz sample rate MP3 audio file using mpg321 and aucat.

If you are still experiencing trouble, here are some things to consider:

● Some old ISA cards have particular quirks:
❍ Some need to be configured with a different I/O address and IRQ value to avoid conflicts

with other hardware. You can easily try different combinations using the User Kernel
Configuration (UKC).

❍ It is possible that a less than optimal driver attaches to the sound device, and that you can
get better results using another driver. This is not the easiest thing to spot, but take a closer
look at your dmesg(8) output, and find the lines where audio drivers attach. If you see
more than one sound driver attaching (or trying to), test them one at a time by disabling
some and leaving one enabled using the User Kernel Configuration (UKC).

● Find information about your sound device. Use the documentation, or use an internet search
engine to find its specifications. For ac97(4) and azalia(4) devices, look for documentation for
both the controller and the codec. They may actually help you find the source of the problem.

If you believe your device should be working, but for whatever reason isn't, then it's time for a little
debugging. The following steps can determine if data is being processed by the DAC.

$ cat > /dev/audio < /dev/zero &
[1] 9926

http://www.openbsd.org/faq/faq13.html (9 of 24)4/29/2009 5:05:44 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=dmesg&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ac97&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=azalia&sektion=4

13 - Multimedia

$ audioctl play.{seek,samples,errors}
play.seek=48000
play.samples=3312000
play.errors=0
$ audioctl play.{seek,samples,errors}
play.seek=57600
play.samples=7065600
play.errors=0
$ audioctl play.{seek,samples,errors}
play.seek=48000
play.samples=9379200
play.errors=0
$ kill %1
$ fg %1
cat > /dev/audio < /dev/zero
Terminated

Here we see that the processed data count play.samples increases each time we check, so data is
flowing. We also see that the device is keeping enough data buffered play.seek that the device has
not underrun any samples play.errors. That's good too.

Note that even if you had speakers plugged in when running the above test, you should not have heard
anything. The test sends zeros to the device, which is silence for all currently supported default
encodings.

Since we know the device can process data, it's a good idea to check the mixer settings again. Make sure
all outputs and all inputs are unmuted and are at a reasonable level.

If at this point you are still having problems, it's probably time to file a bug report. Besides the normal
bug report information such as a full dmesg and description of the problem, please also include the
default output of mixerctl -v and the output of the above test for DAC processing.

13.6 - How do I use my MIDI instruments?

The Musical Instrument Digital Interface (MIDI) protocol provides a standardized and efficient means to
represent musical performance information as electronic data. A MIDI data contain only instructions
needed by a synthesizer to play the sounds, rather than the sounds. More information: Tutorial on MIDI
and Music Synthesis

To play MIDI data, a synthesizer connected to a MIDI port of the machine is required. Similarly, to
record a MIDI data a MIDI instrument is required (eg. a MIDI keyboard). Certain sound cards contain

http://www.openbsd.org/faq/faq13.html (10 of 24)4/29/2009 5:05:44 PM

http://www.openbsd.org/report.html
http://www.harmony-central.com/MIDI/Doc/tutorial.html
http://www.harmony-central.com/MIDI/Doc/tutorial.html

13 - Multimedia

embedded MIDI synthesizers that are attached as MIDI ports. Advanced MIDI instruments may contain
multiple subparts (synthesizers, keyboards, control surfaces, etc...), they appear as multiple MIDI ports
on OpenBSD.

When you already have OpenBSD running, look for MIDI ports in the output of the dmesg(8) command.
An example of MIDI ports in a dmesg output is:

midi0 at pcppi0: <PC speaker>
umidi0 at uhub2 port 2 configuration 1 interface 0 "Roland
Roland XV-2020" rev 1.10/1.00 addr 2
midi1 at umidi0: <USB MIDI I/F>
umidi1 at uhub1 port 2 configuration 1 interface 1
"Evolution Electronics Ltd. USB Keystation 61es" rev
1.00/1.25 addr 3
midi2 at umidi1: <USB MIDI I/F>

It shows three MIDI ports, corresponding to:

● /dev/rmidi0 - the PC speaker
● /dev/rmidi1 - synthesizer connected by USB
● /dev/rmidi2 - a MIDI master keyboard

To test your MIDI keyboard, you can use the hexdump(1) utility to display MIDI data you're playing on
it:

$ hexdump -e '1/1 "%02x\n"' </dev/rmidi2
90
3c
71
...

The output of the keyboard can be connected to the input of the synthesizer, as follows:

$ cat -u /dev/rmidi1 >/dev/rmidi2

Now you can hear on the synthesizer what you're playing on the MIDI keyboard. Indeed information on
what you play is captured from /dev/rmidi1 and sent to /dev/rmidi2 in real-time. Refer to the midi(4)
manual page for further information.

The main utility to play standard MIDI files is midiplay(1). Playing a standard MIDI file, in this
example through the synthesizer, is as easy as:

http://www.openbsd.org/faq/faq13.html (11 of 24)4/29/2009 5:05:44 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=hexdump&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=midi&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=midiplay&sektion=1

13 - Multimedia

$ midiplay -d 1 file.mid

Notice that we specified MIDI device number 1 (ie. /dev/rmidi1) as a parameter because device
number 0 is used by default.

To record MIDI files, you can use the smfrec utility bundled in the audio/midish port, for
instance:

$ smfrec -d /dev/rmidi1 -i /dev/rmidi2 file.mid

will record what is played on the keyboard (/dev/rmidi2) while sending it in real-time on the
synthesizer (/dev/rmidi1) so you can hear what you're playing. More complicated operations like
editing, routing, mixing and transforming MIDI data, can be achieved using the rmidish utility
bundled in the audio/midish port.

13.7 - Tell me about Ogg Vorbis and MP3 encoding?

These formats were already mentioned in Playing different kinds of audio. In this section we will give a
brief introduction about encoding such files. If you are interested in learning how these audio
compression codecs work, further reading may be found through these Wikipedia articles about Vorbis
and MP3.

Ogg Vorbis

Encoding raw, WAV or AIFF format audio to Ogg Vorbis may be done with the oggenc utility,
contained in the audio/vorbis-tools package, which is available through OpenBSD's packages
and ports system.

Say you have a number of WAV files ready to encode, for example your favorite album you just
extracted from its CD. To encode all these files using an approximate bit rate of 192 kbps, you could
issue a command like

$ oggenc *.wav -b 192

When finished, this will give you a set of .ogg files in the current directory. More extensive examples, as
well as encoding options, can be found in the oggenc manual page.

MPEG-1 Audio Layer 3 (MP3)

If for some reason you want to use the MP3 format, you can use "Lame ain't an MP3 encoder" (LAME),

http://www.openbsd.org/faq/faq13.html (12 of 24)4/29/2009 5:05:44 PM

http://en.wikipedia.org/wiki/Vorbis
http://en.wikipedia.org/wiki/MP3
http://www.vorbis.com/
http://lame.sourceforge.net/

13 - Multimedia

an educational tool to be used for learning about MP3 encoding. Lame is included in the OpenBSD ports
tree. Note that due to MP3 patents, you will not find this package on the official CD sets.

Below is a simple example of encoding a WAV file with a bit rate of 192 kbps:

$ lame -b 192 track01.wav track01.mp3

For all options and details, please consult the manual page that comes with lame.

13.8 - How can I playback video DVDs in OpenBSD?

OpenBSD supports DVD media through the ISO 9660 filesystem which is also used on CD-ROMs, and,
since OpenBSD 3.8, also through the newer Universal Disk Format (UDF) filesystem which is found on
some DVDs. However, almost all DVD-Video and DVD-ROM discs use the UDF bridge format, which
is a combination of the DVD MicroUDF (subset of UDF 1.02) and ISO 9660 filesystems. It is used for
backward compatibility reasons.

As most computers with DVD-ROM drives use software decoding, it is recommended to have at least a
350-MHz Pentium II or equivalent CPU to have good quality playback.

Some popular media players, supporting DVD playback, have been ported to OpenBSD. Examples are
ogle, mplayer, xine, and kaffeine. Please read the installation instructions that come with these packages,
because these tools may need further setup. With these utilities, it is possible to playback the DVD by
directly accessing the raw device. Of course, it is also possible to mount a DVD first using
mount_cd9660(8), and play the files on this or any other mounted filesystem.

Notes:

● Nearly all DVDs you buy are encrypted using the Content Scrambling System (CSS). To be able
to playback these encrypted DVDs, you can use the libdvd library, also available through
packages and ports.

● Be aware that a region code may be present on your DVD disk(s). This should not be much of a
problem when playing DVDs on a computer.

13.9 - How do I burn CDs and DVDs?

13.9.1 - Introduction and basic setup

You should first make sure your CD/DVD writer has been recognized and configured by the kernel.
Most SCSI devices are supported. IDE/ATAPI and USB devices are supported through SCSI emulation.

http://www.openbsd.org/faq/faq13.html (13 of 24)4/29/2009 5:05:44 PM

http://www.openbsd.org/orders.html
http://www.osta.org/specs/
http://www.dtek.chalmers.se/groups/dvd/
http://www.mplayerhq.hu/
http://www.xine-project.org/
http://kaffeine.sourceforge.net/
http://www.openbsd.org/cgi-bin/man.cgi?query=mount_cd9660&sektion=8

13 - Multimedia

You will quickly find your device in a dmesg(8) output. Just look for lines beginning with "cd", for
example

cd0 at scsibus0 targ 0 lun 0: <TOSHIBA, CD-ROM XM-5702B,
2826> SCSI0 5/cdrom removable
cd1 at scsibus1 targ 4 lun 0: <PLEXTOR, CD-R PX-R412C,
1.04> SCSI2 5/cdrom removable

But cdrecord -scanbus does not work!

Yes. OpenBSD uses a different device namespace than the OS for which the cdrecord utility was
written. All configured devices should be in the dmesg output, as mentioned above. The information you
need is right there.

Error: mount_cd9660: /dev/cd2c on /mnt/cdrom: No such file or directory

By default, the OpenBSD installer creates only two cd device nodes, cd0 and cd1. To start using your
cd2 device, you must create the necessary device nodes for it. The recommended way to do that is using
the MAKEDEV(8) (select your specific platform) script:

cd /dev
./MAKEDEV cd2

In what follows, we will mostly be accessing the CD/DVD writer through the raw character device, not
the block device.

Checking CD/DVD writer operation

It is recommended to check whether your CD/DVD writer is working correctly. In this example, I'll be
using this USB 2.0 DVD writer:

cd2 at scsibus2 targ 1 lun 0: <LITE-ON, DVDRW LDW-851S,
GS0C> SCSI0 5/cdrom removable

Try to use it by mounting an existing CD/DVD in it. If desired, you could also check the transfer rate
you are getting when copying files to your hard disk. The time(1) command will be your willing
assistant.

If something goes wrong here and you are getting errors during this phase, it is wise to fix the problem
and not to start writing a CD/DVD yet.

http://www.openbsd.org/faq/faq13.html (14 of 24)4/29/2009 5:05:44 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=dmesg&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=MAKEDEV&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=time&sektion=1

13 - Multimedia

I want to write a CD here! Can we get on with it?

Before proceeding, it is a good idea to keep a few words of advice in mind:

● Do not run any disk-intensive jobs while writing a CD/DVD. Doing this will reduce the
throughput to your CD/DVD writer. If the throughput drops below what the writer is expecting
for too long, its buffer will run empty. This phenomenon is also known as a "buffer underrun".

● Prevent shocks during writing as this may cause the laser beam to drift from its track, which may
lead to errors on the disc.

● Not every DVD writer supports every DVD format, see below.

13.9.2 - Writing CDs

Creating data CD-ROMs

First, you will want to create an ISO 9660 filesystem to put on a CD-ROM. To do this you can use the
mkhybrid(8) utility in the base system, or the mkisofs utility which comes with the cdrtools package and
which does a better job with large file trees. In the examples below, we will use mkhybrid, although
mkisofs usage is very similar.

As an example usage, let's say I wanted to store the OpenBSD kernel sources in an ISO 9660 image:

$ mkhybrid -R -o sys.iso /usr/src/sys

Using ALTQ_RMC.000;1 for /usr/src/sys/altq/
altq_rmclass_debug.h (altq_rmclass.h)
...
Using IEEE8021.00H;1 for /usr/src/sys/net80211/
ieee80211_amrr.c (ieee80211.c)
 10.89% done, estimate finish Sat Nov 3 08:01:23 2007
 21.78% done, estimate finish Sat Nov 3 08:01:28 2007
...
 87.12% done, estimate finish Sat Nov 3 08:01:31 2007
 98.01% done, estimate finish Sat Nov 3 08:01:32 2007
Total translation table size: 0
Total rockridge attributes bytes: 896209
Total directory bytes: 2586624
Path table size(bytes): 11886
Max brk space used 0
45919 extents written (89 Mb)

The -R option tells mkhybrid to create Rock Ridge extensions in the ISO 9660 image. The Rock

http://www.openbsd.org/faq/faq13.html (15 of 24)4/29/2009 5:05:44 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=mkhybrid&sektion=8

13 - Multimedia

Ridge Interchange Protocol was created to support POSIX filesystem semantics in ISO 9660
filesystems, such as longer file names, ownerships, permissions, file links, soft links, device nodes, deep
file hierarchies (more than 8 levels of subdirectories), etc.

If you want the long file names on your CD-ROM to be readable on Windows or DOS systems, you
should add the -J flag to include Joliet extensions in the ISO 9660 image as well.

After creating the filesystem, you can verify it by mounting the ISO 9660 image. If all is well, you are
now ready to burn the CD-R(W). The easiest way to do this is to use the cdio(1) utility.

If you are using multi-write media such as CD-RW, you will need to blank the media before burning it.

cdio -f cd1c blank

You are now ready to burn the image created in the above example to a blank CD-R(W). You could use
a command similar to:

cdio -f cd1c tao sys.iso

With the options specified above, we're asking cdio to use the second CD-ROM device as the CD writer.

To verify whether the CD-ROM has been written correctly, you can mount it and check whether
everything is there. To mount the filesystem, you should use the block device for the CD-ROM drive,
which in this case is still the CD writer:

mount /dev/cd1c /mnt/cdrom

Creating audio CDs

To burn audio CDs, you can again use cdio(1) with the tao -a option.

As an example, I'll be making a backup copy of one of my music CDs. This involves two steps:

1. Fetch the audio tracks from the original CD. For example:

cdio -f cd1c cdrip

This command will extract a series of WAV files from your second CD-ROM drive to your disk.
2. Write the audio tracks to a blank CD. For example:

cdio -f cd1c tao -a *.wav

http://www.openbsd.org/faq/faq13.html (16 of 24)4/29/2009 5:05:44 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=cdio&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=cdio&sektion=1

13 - Multimedia

13.9.3 - Writing DVDs

There are a few important things about DVD you should know about before proceeding to write your
own DVDs.

Important notes:

● If you really want to know all about DVD, I suggest you read the very extensive DVD FAQ
document to start with.

● This section has seen only very limited testing, and we certainly have not tried every possible
media and writer combination. Nevertheless, we have had, or have heard of, positive experiences
with all of the DVD formats mentioned below. You are welcome to let us know about your
successes or failures.

Different DVD formats

There are a number of different DVD formats. Commonly used are the DVD-R, DVD-RW, DVD+R,
and DVD+RW formats (R means writable once, RW means it can be rewritten a few thousand times).
They are pretty much competing standards.

A pretty different format is DVD-RAM, which was mainly developed as a data drive and has advanced
packet writing functions, allowing it to be used like a kind of optical hard disk. DVD-RAM is not
recommended for video usage as video gets written to the discs in a format not compatible with normal
DVD players.

The important thing is you use media which suit your DVD writer. If you expect compatibility with
other DVD players, watch your step and be sure to read this section of the DVD FAQ.

DVD writing speed

It may be useful to point out that DVD speed indications differ from CD-ROM speed indications. The
following table gives an overview:

DVD read/write speed Transfer rate (MB/s) Equivalent CD-R(W) read/write speed

1x 1.32 9x

2x 2.64 18x

4x 5.28 36x

8x 10.57 72x

http://www.openbsd.org/faq/faq13.html (17 of 24)4/29/2009 5:05:44 PM

http://www.dvddemystified.com/dvdfaq.html
mailto:faq@openbsd.org
http://www.dvddemystified.com/dvdfaq.html#4.3.1

13 - Multimedia

As can been seen from the table, the transfer rates are relatively high, and you should check whether
your bus (SCSI, (E)IDE/ATAPI, USB) is performant enough to handle this throughput. Especially the
older USB 1.0 and 1.1 interfaces work at slower transfer rates, with maximal rates of 1.5 Mbit/s and 12
Mbit/s, respectively. That means USB 1.0 has a maximal throughput of 178.8 kByte/s and USB 1.1 has a
maximal throughput of 1.43 MB/s. USB 2.0 is much faster: 480 Mbit/s or 57.2 MB/s. In general, the
speed of SCSI and (E)IDE/ATAPI buses should be just fine.

Writing the DVD

Basically, the process is very similar to writing CD-R(W)s. The software used, however, is different. At
the moment, the best option is growisofs from the sysutils/dvd+rw-tools package. This utility
writes an ISO 9660 image to the DVD medium. All recordable DVD formats are supported by the dvd
+rw-tools.

In case you want to find out more info about the media in your DVD writer (for example if you lost the
info label in the jewel case or are just disorganized like me), you can use the dvd+rw-mediainfo utility.
There are two options to write the DVD:

● Pre-master an ISO 9660 from your data, storing the image on your hard disk; then write this
image to the DVD.

● Write an ISO 9660 from your data immediately to the DVD.

I created a pre-mastered ISO 9660 image from the OpenBSD CVS modules (src, XF4, ports and www)
contained in the /cvs directory on my disk. I used the following command, which looks very similar to
the one I used to create the CD-ROM image above.

$ mkisofs -R -o cvs.iso /cvs

If desired, check the ISO 9660 filesystem by mounting the image. To write this image (about 2 GB) to
an empty DVD disc, one could use:

growisofs -dvd-compat -Z /dev/rcd2c=cvs.iso
Executing 'builtin_dd if=cvs.iso of=/dev/rcd2c obs=32k
seek=0'
/dev/rcd2c: pre-formatting blank DVD+RW...
/dev/rcd2c: "Current Write Speed" is 4.1x1385KBps.
 23822336/1545832448 (1.5%) @3.9x, remaining 5:19
 42172416/1545832448 (2.7%) @3.9x, remaining 5:20
 60522496/1545832448 (3.9%) @3.9x, remaining 4:54
...
1504706560/1545832448 (97.3%) @3.9x, remaining 0:07

http://www.openbsd.org/faq/faq13.html (18 of 24)4/29/2009 5:05:44 PM

13 - Multimedia

1523318784/1545832448 (98.5%) @3.9x, remaining 0:04
1541898240/1545832448 (99.7%) @3.9x, remaining 0:00
/dev/rcd2c: flushing cache
/dev/rcd2c: writing lead-out
/dev/rcd2c: reloading tray

The -Z option tells growisofs to burn an initial session to the device, which in this case is my DVD
writer, attached to cd2. The -dvd-compat option closes the disk, which means no more sessions can
be appended to it. This should provide better compatibility with video DVD players and some older
DVD-ROM units.

Notice how growisofs indicates the writing speed, in this case 3.9x DVD speed, which is what could be
expected from the media and writer combination, as indicated by dvd+rw-mediainfo.

If you are short on disk space and cannot store an ISO 9660 image for a DVD, you can write your data
directly to the DVD. Let's first do a dry run, which simulates the creation of the filesystem.

growisofs -dry-run -Z /dev/rcd2c -R /cvs

If this succeeds, just leave out the -dry-run option and start burning the DVD.

growisofs -Z /dev/rcd2c -R /cvs

It is also possible to append data to an existing DVD, by using the -M option, which merges a new
session to an existing one:

growisofs -M /dev/rcd2c -R /mydata

For more information about growisofs, refer to the manual page.

When you have finished writing the DVD, mount it and see whether everything you expected to be
there, is indeed there.

Why am I not getting the writing speed I expected?

Instead of the above writing output, you may see something like:

 4784128/1545832448 (0.3%) @0.7x, remaining 26:50
 7929856/1545832448 (0.5%) @0.7x, remaining 29:05
 14123008/1545832448 (0.9%) @0.7x, remaining 27:06
...

http://www.openbsd.org/faq/faq13.html (19 of 24)4/29/2009 5:05:44 PM

13 - Multimedia

which is much slower. It means you are somehow not getting enough throughput on whatever bus your
DVD writer is using. In the above example, the USB DVD writer was attached to a machine on which
the ehci(4) driver, used by USB 2.0 controllers, failed to initialize properly. As always, you are welcome
to provide patches and test results. The DVD writer fell back to the slower USB 1.1 interface, which
causes reduced throughput. Indeed, USB 1.1 is limited to 12 Mbit/s, which amounts to 1.43 MB/s or
1.08x in DVD speed terms. The DVD writer falls back to a lower pace than the maximum, to reduce the
risk of buffer underruns.

13.10 - But I want my media files in format FOO.

Converting between different audio formats

Let's say we want to process the sound recording from FAQ 13 - Audio Recording. This recording has
been stored in the raw format. It will be useful to convert it, because the raw format does not include
headers and the recording parameters will need to be specified at every usage of the file.

One sound conversion tool is audio/sox, available through packages and ports. sox supports AIFF,
AU, MP3, Ogg Vorbis, RIFF WAV and raw formats, as well as some of the more exotic audio formats
out there. Below is an example for converting the recording to RIFF WAV format.

$ sox -U -c 1 -r 8000 -b myvoice.raw myvoice.wav

Note that the specified parameters correspond to the recording parameters specified before the
recording. This was just an example. More audio-related libraries and software can be used for audio
conversion.

Note: It is not recommended to convert between different lossy compression formats. For instance, the
MP3 and Vorbis codecs throw away different parts of an original audio waveform. Therefore, when
converting a MP3 file to Ogg Vorbis, the end result will probably sound worse than the original MP3.

Converting between different video formats

It's important to make a clear distinction between

● the container file format - popular examples are MP4, OGG, MPEG, MOV, AVI, ASF.
● the video codec - for example MPEG-1, MPEG-2, MPEG-4 compliant codecs (like Xvid and

DivX), FFmpeg, WMV, ... - read this Wikipedia article about video codecs to find out more.

In OpenBSD, support for MPEG and AVI containers is most mature at this time. No utilities in the ports
tree can create streams in MP4 containers yet.

http://www.openbsd.org/faq/faq13.html (20 of 24)4/29/2009 5:05:44 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ehci&sektion=4
http://en.wikipedia.org/wiki/Video_codec

13 - Multimedia

Two popular utilities are multimedia/transcode and mencoder (part of x11/mplayer). They
use or can use the libavcodec library as part of the graphics/ffmpeg port, which generates good
quality output. You can, of course, also use ffmpeg directly. It should also be possible to use the XviD
encoder in multimedia/xvidcore.

The documentation that comes with these packages, under the form of manual pages or HTML
documents in /usr/local/share/doc, contains many examples, so it is HIGHLY recommended
to read those documents.

13.11 - Is it possible to play streaming media under OpenBSD?

Yes, it is. Many audio and video streams will work just fine, on a limited number of platforms. A few of
them will not.

This is not meant to be a complete, overly detailed answer to have every possible streaming format work
on any hardware architecture. You may want to learn more about streaming media to start with. A
slightly dated but still good starting point is this chapter about streaming media from the O'Reilly book
titled Designing Web Audio.

The first thing to understand is that there are a number of different streaming protocols around. The
streaming protocol defines how the streams will be sent over the network. They have been developed to
allow efficient transmission of audio/video over the internet in real-time. Mostly, the streaming protocol
is a (Layer 7) application protocol, which can use either UDP or TCP (Layer 4) transport protocols. The
User Datagram Protocol (UDP) is very suited for this type of application since it doesn't do any
retransmission of packets or other overhead. A number of specialized but proprietary protocols have
been developed, e.g. Microsoft Media Services (MMS) and the Real Time Streaming Protocol (RTSP).
As we will see, HTTP (which uses TCP) is sometimes used as well, even though it does not allow
serving streams at a steady bitrate like UDP, RTSP and MMS.

Next, there is the streaming format, which is how the audio/video data has been organized and can be
played. The most widely used streaming formats are MP3, Real Audio (RA, RM) and Windows Media
(ASF), all proprietary technologies. Occasionally you will also encounter streams in the open Ogg
Vorbis format.

As an example, I'll explain in a few steps how I get to listen to Radio 1, one of the Belgian national radio
stations. Browser-embedded plugins are not available on OpenBSD, so the story is usually not an instant
"click and play".

● Determine the streaming protocol and format.
This is usually indicated on the website where you access the stream. In this case, I followed the
link "Listen live" from the main site, and it's telling me my operating system is not supported.

http://www.openbsd.org/faq/faq13.html (21 of 24)4/29/2009 5:05:44 PM

http://www.oreilly.com/catalog/sound/chapter/ch05.html
http://www.radio1.be/

13 - Multimedia

They are being nice by saying I can also listen to their MP3 streams without their embedded
Flash player. Apart from that, a list of links to the national radio stations appears, allowing me to
proceed to the next step. Note that I used a JavaScript-enabled browser to get this far.

● Figure out the precise URL.
Many websites link to a container metafile or playlist (such as M3U, ASX, RAM), which
contains the actual location of the stream. Just save the file, and read the URL from it. In my
example this is

$ ftp http://internetradio.vrt.be/dab/hoeluisteren/pc/
help/gebruiksvoorwaarden/stream_11.m3U
$ cat stream_11.m3U
http://mp3.streampower.be/radio1-mid.mp3
http://mp3.streampower.be/radio1-low.mp3
http://mp3.streampower.be/radio1-high.mp3

It looks like I can even choose between low, medium and high quality streams. Other websites
may contain some JavaScript code to generate the URL. In that case, the best tip is: dig up the
HTML source and scripts it refers to. There is a good chance you can reconstruct the URL from
it.

● To play streams, your best bet is probably x11/mplayer, which is available through packages
and ports. It supports most of the streaming protocols and formats, and has been reported to work
on amd64, i386, powerpc and sparc64 platforms. But there are alternatives: ogg123 from audio/
vorbis-tools (for Ogg Vorbis streams), audio/mpg123 and audio/mpg321 (for MP3
streams), XMMS in audio/xmms and the Videolan Client in x11/vlc. Continuing the
example:

$ mplayer http://mp3.streampower.be/radio1-mid.mp3

● Optionally, you may want to make it a little easier by including an alias in your .profile:

alias radio1='mplayer http://mp3.streampower.be/radio1-
mid.mp3'

Windows Media (ASF) streams will often work, though they may contain data in formats supported only
through the graphics/win32-codecs port, which runs on i386 only ('pkg_info win32-codecs' will
tell you which codecs). Some Real Audio streams can be made to work on i386 using mplayer in
conjunction with the graphics/win32-codecs and emulators/fedora/base ports (see this
thread on the ports mailing list).

13.12 - Can I have Java support in my web browser? (i386 &
amd64 only)

http://www.openbsd.org/faq/faq13.html (22 of 24)4/29/2009 5:05:44 PM

http://marc.info/?t=107060510300001&r=1&w=2
http://marc.info/?t=107060510300001&r=1&w=2

13 - Multimedia

The Java plugin is part of the Java Development Toolkit (JDK). For licensing reasons, OpenBSD cannot
ship binary packages for the JDK. This means you will have to build it from ports. Further information
on building the JDK can be found in FAQ 8 - Programming Languages. Once you have finished
building the JDK, you can install either the full JDK package or just the Java Runtime Environment
(JRE) which is in a subpackage and contains the browser plugin.

Upon installation, instructions are displayed for using the Java plugin with the Firefox or Seamonkey
web browser. Create the symlink as explained, and then you should see the Java plugin upon entering
"about:plugins" in the URL bar.

For KDE's Konqueror web browser, either the java binary must be in your PATH, or its absolute path
can be configured from the menu Settings -> Configure Konqueror -> Java & JavaScript. By default, the
java binary is located in /usr/local/jre-version/bin/ or /usr/local/jdk-version/
bin/, depending on whether you installed the JRE or the JDK.

Note: Java support has only been tested with the Firefox, Seamonkey, and Konqueror web browsers. If
it works well for you using a different browser, please let us know.

13.13 - Can I have Flash support in my web browser? (i386 only)

The Flash plugin is distributed by Adobe in binary form only. Adobe does not provide a native
OpenBSD plugin, but there is a Linux plugin which you can use under Linux emulation. This plugin is
available only for the i386 platform.

Before continuing, it is a good idea to read about Linux emulation in the compat_linux(8) manual page,
and also FAQ 9 - Running Linux binaries on OpenBSD.

If you have understood this and you didn't install the necessary files yet, just add the fedora package.
Assuming you have the environment variable PKG_PATH set (see FAQ 15),

pkg_add -i fedora_base

This will automatically set kern.emul.linux=1, but not permanently. If you need permanent Linux
emulation, you need to specify that in /etc/sysctl.conf, as explained in FAQ 9 - Running Linux
binaries on OpenBSD.

Another thing you should know is that Linux shared libraries and modules cannot be used with
OpenBSD executables, so you will need a Linux browser as well.

One candidate is the Opera web browser, available in the ports tree. OpenBSD does not distribute

http://www.openbsd.org/faq/faq13.html (23 of 24)4/29/2009 5:05:44 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=compat_linux&sektion=8
http://www.opera.com/

13 - Multimedia

packages for it, since Opera's license is not clear about its redistribution. However, installation should
not take long, since it is distributed in binary form by Opera Software. After that you can easily install
the Flash plugin from the ports tree.

cd /usr/ports/www/opera
make install
cd /usr/ports/www/opera-flashplugin
make install

Note: It should be sufficient to perform the last step alone, and the ports system will install the
dependencies automatically. For clarity, however, we split the process into a few steps here to explain.

If you have followed the above guidelines, the Flash plugin should now be listed when you type "about:
plugins" in the URL bar.

[FAQ Index] [To Section 12 - Hardware and Platform-Specific Questions] [To Section 14 - Disk Setup]

 www@openbsd.org
$OpenBSD: faq13.html,v 1.127 2009/04/07 00:41:14 nick Exp $

http://www.openbsd.org/faq/faq13.html (24 of 24)4/29/2009 5:05:44 PM

mailto:www@openbsd.org

14 - Disk Setup

[FAQ Index] [To Section 13 - Multimedia] [To Section 15 - Packages and Ports]

14 - Disk Setup

Table of Contents

● 14.1 - Using OpenBSD's disklabel(8)
● 14.2 - Using OpenBSD's fdisk(8)
● 14.3 - Adding extra disks in OpenBSD
● 14.4 - How is swap handled?
● 14.5 - Soft Updates
● 14.6 - How does OpenBSD/i386 boot?
● 14.7 - What are the issues regarding large drives with OpenBSD?
● 14.8 - Installing Bootblocks - i386/amd64 specific
● 14.9 - Preparing for disaster: Backing up and Restoring from tape.
● 14.10 - Mounting disk images in OpenBSD
● 14.11 - Help! I'm getting errors with IDE DMA!
● 14.13 - RAID options with OpenBSD
● 14.14 - Why does df(1) tell me I have over 100% of my disk used?
● 14.15 - Recovering partitions after deleting the disklabel
● 14.16 - Can I access data on filesystems other than FFS?

❍ 14.16.1 - The partitions are not in my disklabel! What should I do?
● 14.17 - Can I use a flash memory device with OpenBSD?
● 14.18 - Optimizing disk performance
● 14.19 - Why aren't we using async mounts?

14.1 - Using OpenBSD's disklabel(8)

What is disklabel(8)?

First, be sure to read the disklabel(8) man page.

The details of setting up disks in OpenBSD varies somewhat between platforms. For i386, amd64, macppc,
zaurus, and armish, disk setup is done in two stages. First, the OpenBSD slice of the hard disk is defined using

http://www.openbsd.org/faq/faq14.html (1 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=disklabel&sektion=8
http://www.openbsd.org/i386.html
http://www.openbsd.org/amd64.html
http://www.openbsd.org/macppc.html
http://www.openbsd.org/zaurus.html
http://www.openbsd.org/armish.html

14 - Disk Setup

fdisk(8), then that slice is subdivided into OpenBSD partitions using disklabel(8).

All OpenBSD platforms, however, use disklabel(8) as the primary way to manage OpenBSD partitions. Platforms
that also use fdisk(8) place all the disklabel(8) partitions in a single fdisk partition.

Labels hold certain information about your disk, like your drive geometry and information about the filesystems
on the disk. They also contain information about your disk itself, such as rotational speed, interleave, etc., which
is there for historic reasons, and is often incorrect. Don't worry about this. The disklabel is then used by the
bootstrap program to access the drive and to know where filesystems are contained on the drive. You can read
more in-depth information about disklabel in the disklabel(5) man page.

On some platforms, disklabel helps overcome architecture limitations on disk partitioning. For example, on i386,
you can have 4 primary partitions, but with disklabel(8), you use one of these 'primary' partitions to store *all* of
your OpenBSD partitions (for example, 'swap', '/', '/usr', '/var', etc.), and you still have 3 more partitions available
for other OSs.

disklabel(8) during OpenBSD's install

One of the major parts of OpenBSD's install is your initial creation of labels. During the install you use disklabel
(8) to create your separate partitions. As part of the install process, you can define your mount points from within
disklabel(8), but you can change these later in the install or post-install, as well.

There is not one "right" way to label a disk, but there are many wrong ways. Before attempting to label your disk,
see this discussion on partitioning and partition sizing.

For an example of using disklabel(8) during install, see the Setting up disks part of the Installation Guide.

Using disklabel(8) after install

After install, one of the most common reasons to use disklabel(8) is to look at how your disk is laid out. The
following command will show you the current disklabel, without modifying it:

disklabel wd0 <-- Or whatever disk device you'd like to view
Inside MBR partition 3: type A6 start 63 size 29880837
/dev/rwd0c:
type: ESDI
disk: ESDI/IDE disk
label: Maxtor 51536H2
flags:
bytes/sector: 512
sectors/track: 63
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 16383
total sectors: 29888820

http://www.openbsd.org/faq/faq14.html (2 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=disklabel&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=disklabel&sektion=8

14 - Disk Setup

rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

16 partitions:
size offset fstype [fsize bsize cpg]
 a: 614817 63 4.2BSD 2048 16384 328 #
Cyl 0*- 609
 b: 409248 614880 swap # Cyl
610 - 1015
 c: 29888820 0 unused 0 0 #
Cyl 0 - 29651*
 d: 6291936 1024128 4.2BSD 2048 16384 328 # Cyl
1016 - 7257
 e: 409248 7316064 4.2BSD 2048 16384 328 # Cyl
7258 - 7663
 f: 1024128 9822960 4.2BSD 2048 16384 328 # Cyl
9745 - 10760
 h: 2097648 7725312 4.2BSD 2048 16384 328 # Cyl
7664 - 9744

Note how this disk has only part of its disk space allocated at this time. Disklabel offers two different modes for
editing the disklabel, a built-in command-driven editor (this is how you installed OpenBSD originally), and a full
editor, such as vi(1). You may find the command-driven editor "easier", as it guides you through all the steps and
provides help upon request, but the full-screen editor has definite use, too.

Let's add a partition to the above system.

Warning: Any time you are fiddling with your disklabel, you are putting all the data on your disk at
risk. Make sure your data is backed up before editing an existing disklabel!

We will use the built-in command-driven editor, which is invoked using the "-E" option to disklabel(8).

disklabel -E wd0
...
> a k
offset: [10847088]
size: [19033812] 2g
Rounding to nearest cylinder: 4194288
FS type: [4.2BSD]
> p m
device: /dev/rwd0c

http://www.openbsd.org/faq/faq14.html (3 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=vi&sektion=1

14 - Disk Setup

type: ESDI
disk: ESDI/IDE disk
label: Maxtor 51536H2
bytes/sector: 512
sectors/track: 63
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 16383
total bytes: 14594.2M
free bytes: 7245.9M
rpm: 3600

16 partitions:
size offset fstype [fsize bsize cpg]
 a: 300.2M 0.0M 4.2BSD 2048 16384 328 #
Cyl 0*- 609
 b: 199.8M 300.2M swap # Cyl
610 - 1015
 c: 14594.2M 0.0M unused 0 0 #
Cyl 0 - 29651*
 d: 3072.2M 500.1M 4.2BSD 2048 16384 328 # Cyl
1016 - 7257
 e: 199.8M 3572.3M 4.2BSD 2048 16384 328 # Cyl
7258 - 7663
 f: 500.1M 4796.4M 4.2BSD 2048 16384 328 # Cyl
9745 - 10760
 h: 1024.2M 3772.1M 4.2BSD 2048 16384 328 # Cyl
7664 - 9744
 k: 2048.0M 5296.4M 4.2BSD 2048 16384 16 # Cyl
10761 - 14921
> q
Write new label?: [y]

In this case, disklabel(8) was kind enough to calculate a good starting offset for the partition. In many cases, it
will be able to do this, but if you have "holes" in the disklabel (i.e., you deleted a partition, or you just like making
your life miserable) you may need to sit down with a paper and pencil to calculate the proper offset. Note that
while disklabel(8) does some sanity checking, it is very possible to do things very wrong here. Be careful,
understand the meaning of the numbers you are entering.

On most OpenBSD platforms, there are sixteen disklabel partitions available, labeled "a" through "p". (some
"specialty" systems may have only eight). Every disklabel should have a 'c' partition, with an "fstype" of "unused"
that covers the entire physical drive. If your disklabel is not like this, it must be fixed, the "D" option (below) can
help. Never try to use the "c" partition for anything other than accessing the raw sectors of the disk, do not attempt
to create a file system on "c". On the boot device, "a" is reserved for the root partition, and "b" is the swap
partition, but only the boot device makes these distinctions. Other devices may use all fifteen partitions other than
"c" for file systems.

http://www.openbsd.org/faq/faq14.html (4 of 35)4/29/2009 5:05:55 PM

14 - Disk Setup

Disklabel tricks and tips

● Get help: In the command-driven mode, hitting "?" will produce a list of available commands. "M" will
show the man page for disklabel(8).

● Reset to default: In some cases, you may wish to completely restart from scratch and delete all existing
disklabel information. The "D" command will reset the label back to default, as if there had never been a
disklabel on the drive.

● Duplicating a disklabel: In some cases, you may wish to duplicate the partitioning from one disk to
another, but not precisely (for example, you wish to have the same partitions, but on different sizes of
drives). Use the '-e' (full-screen editor) mode of disklabel(8) to capture the partitions of the "model" drive,
paste it into the new drive, remove the model's 'c' partition, save, and you have copied the disk layout to
the other drive without altering its basic parameters.

● (sparc/sparc64) Don't put swap at the very beginning of your disk.
● (i386, amd64) Leave first track free: On some platforms, you should leave the first logical track unused,

both in disklabel(8) and in fdisk(8). This guideline is sometimes corrupted into "start the partitions at
sector 63", but this is ONLY true if that is the size of a track on your hardware. Don't make that
assumption, it is not always true, disklabel will tell you what it thinks the number of sectors per track is.
Many other platforms expect the OpenBSD partitions to start at sector 0.

● Devices without a disklabel: If a device does not currently have an OpenBSD disklabel on it but has
another file system (for example, a disk with a pre-existing FAT32 file system), the OpenBSD kernel will
"create" one in memory, and that can form the basis of a formal OpenBSD disklabel to be stored on disk.
However, if a disklabel is created and saved to disk, and a non-OpenBSD file system is added later, the
disklabel will not be automatically updated. You must do this yourself if you wish OpenBSD to be able to
access this file system. More on this below.

● "q" vs. "x": For historical reasons, while in the command-driven editor mode, "q" saves changes and
exits the program, and "x" exits without saving. This is the opposite of what many people are now used to
in other environments. disklabel(8) does warn before saving the changes, though it will "x" quickly and
quietly.

14.2 - Using fdisk(8)

Be sure to check the fdisk(8) man page.

fdisk(8) is used on some platforms (i386, amd64, macppc, zaurus and armish) to create a partition recognized by
the system boot ROM, into which the OpenBSD disklabel partitions can be placed. Other platforms do not need
or use fdisk(8). fdisk(8) can also be used for manipulations of the Master Boot Record (MBR), which can impact
all operating systems on a computer. Unlike the fdisk-like programs on some other operating systems, OpenBSD's
fdisk assumes you know what you want to do, and for the most part, it will let you do what you need to do,
making it a powerful tool to have on hand. It will also let you do things you shouldn't or didn't intend to do, so it
must be used with care.

Normally, only one OpenBSD fdisk partition will be placed on a disk. That partition will be subdivided by
disklabel into OpenBSD filesystem partitions.

To just view your partition table using fdisk, use:

http://www.openbsd.org/faq/faq14.html (5 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=fdisk&sektion=8&arch=i386

14 - Disk Setup

fdisk sd0

Which will give an output similar to this:

Disk: sd0 geometry: 553/255/63 [8883945 Sectors]
Offset: 0 Signature: 0xAA55
 Starting Ending LBA Info:
 #: id C H S - C H S [start: size]
--
*0: A6 3 0 1 - 552 254 63 [48195: 8835750]
OpenBSD
 1: 12 0 1 1 - 2 254 63 [63: 48132]
Compaq Diag.
 2: 00 0 0 0 - 0 0 0 [0: 0]
unused
 3: 00 0 0 0 - 0 0 0 [0: 0]
unused

In this example we are viewing the fdisk output of the first SCSI drive. We can see the OpenBSD partition (A6)
and its size. The * tells us that the OpenBSD partition is a bootable partition.

In the previous example we just viewed our information. What if we want to edit our partition table? Well, to do
so we must use the -e flag. This will bring up a command line prompt to interact with fdisk.

fdisk -e wd0
Enter 'help' for information
fdisk: 1> help
 help Command help list
 manual Show entire OpenBSD man page for fdisk
 reinit Re-initialize loaded MBR (to defaults)
 setpid Set the identifier of a given table entry
 disk Edit current drive stats
 edit Edit given table entry
 flag Flag given table entry as bootable
 update Update machine code in loaded MBR
 select Select extended partition table entry MBR
 swap Swap two partition entries
 print Print loaded MBR partition table
 write Write loaded MBR to disk
 exit Exit edit of current MBR, without saving
changes
 quit Quit edit of current MBR, saving current
changes
 abort Abort program without saving current
changes

http://www.openbsd.org/faq/faq14.html (6 of 35)4/29/2009 5:05:55 PM

14 - Disk Setup

fdisk: 1>

Here is an overview of the commands you can use when you choose the -e flag.

● help Display a list of commands that fdisk understands in the interactive edit mode.
● reinit Initialize the currently selected, in-memory copy of the boot block. This is a handy way to quickly

slap a "full-disk" OpenBSD partition in place, update the boot code, and in general, make the system ready
for OpenBSD (and nothing but OpenBSD).

● disk Display the current drive geometry that fdisk has probed. You are given a chance to edit it if you
wish.

● setpid Change the partition identifier of the given partition table entry. This command is particularly
useful for reassigning an existing partition to OpenBSD.

● edit Edit a given table entry in the memory copy of the current boot block. You may edit either in BIOS
geometry mode, or in sector offsets and sizes.

● flag Make the given partition table entry bootable. Only one entry can be marked bootable. If you wish to
boot from an extended partition, you will need to mark the partition table entry for the extended partition
as bootable. (OpenBSD itself can only be booted from primary partitions, but you can mark any partition
as bootable.)

● update Update the machine code in the memory copy of the currently selected boot block.
● select Select and load into memory the boot block pointed to by the extended partition table entry in the

current boot block.
● swap Swaps two MBR entries, so you can re-order the MBR.
● print Print the currently selected in-memory copy of the boot block and its MBR table to the terminal.
● write Write the in-memory copy of the boot block to disk. You will be asked to confirm this operation.
● exit Exit the current level of fdisk, either returning to the previously selected in-memory copy of a boot

block, or exiting the program if there is none.
● quit Exit the current level of fdisk, either returning to the previously selected in-memory copy of a boot

block, or exiting the program if there is none. Unlike exit it does write the modified block out.
● abort Quit program without saving current changes.

fdisk tricks and tips

● fdisk(8) offers the ability to edit partitions both in raw sectors and in Cylinder/Head/Sector formats. Both
options are given for a reason -- some tasks are easier accomplished one way, others the other way. Don't
lock yourself into only using one option.

● A totally blank disk will need to have the master boot record's boot code written to the disk before it can
boot. You can use the "reinit" or "update" options to do this. If you fail to do this, you can write a valid
partition table with fdisk, but not have a bootable disk. You may wish to update the existing boot code
anyway if you are uncertain of its origin.

● If your system has a "maintenance" or "diagnostic" partition, it is recommended that you leave it in place
or install it BEFORE installing OpenBSD.

● For historical reasons, "q" saves changes and exits the program, and "x" exits without saving. This is the
opposite of what many people are now used to in other environments. fdisk(8) does not warn before saving
the changes, so use with care.

14.3 - Adding extra disks in OpenBSD

http://www.openbsd.org/faq/faq14.html (7 of 35)4/29/2009 5:05:55 PM

14 - Disk Setup

Well once you get your disk installed PROPERLY you need to use fdisk(8) (i386 only) and disklabel(8) to set up
your disk in OpenBSD.

For i386 folks, start with fdisk. Other architectures can ignore this. In the below example we're adding a third
SCSI drive to the system.

fdisk -i sd2

This will initialize the disk's "real" partition table for exclusive use by OpenBSD. Next you need to create a
disklabel for it. This will seem confusing.

disklabel -e sd2

(screen goes blank, your $EDITOR comes up)
type: SCSI
...bla...
sectors/track: 63
total sectors: 6185088
...bla...
16 partitions:
size offset fstype [fsize bsize cpg]
 c: 6185088 0 unused 0 0 # (Cyl.
0 - 6135)
 d: 1405080 63 4.2BSD 1024 8192 16 # (Cyl.
0*- 1393*)
 e: 4779945 1405143 4.2BSD 1024 8192 16 # (Cyl.
1393*- 6135)

First, ignore the 'c' partition, it's always there and is for programs like disklabel to function! Fstype for OpenBSD
is 4.2BSD. Total sectors is the total size of the disk. Say this is a 3 gigabyte disk. Three gigabytes in disk
manufacturer terms is 3000 megabytes. So divide 6185088/3000 (use bc(1)). You get 2061. So, to make up
partition sizes for a, d, e, f, g, ... just multiply X*2061 to get X megabytes of space on that partition. The offset for
your first new partition should be the same as the "sectors/track" reported earlier in disklabel's output. For us it is
63. The offset for each partition afterwards should be a combination of the size of each partition and the offset of
each partition (except the 'c' partition, since it has no play into this equation.)

Or, if you just want one partition on the disk, say you will use the whole thing for web storage or a home directory
or something, just take the total size of the disk and subtract the sectors per track from it. 6185088-63 = 6185025.
Your partition is

 d: 6185025 63 4.2BSD 1024 8192 16

If all this seems needlessly complex, you can just use disklabel -E to get the same partitioning mode that
you got on your install disk! There, you can just use "96M" to specify "96 megabytes", or 96G for 96 gigs.

http://www.openbsd.org/faq/faq14.html (8 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=fdisk&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=disklabel&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=bc&sektion=1

14 - Disk Setup

That was a lot. But you are not finished. Finally, you need to create the filesystem on that disk using newfs(8).

newfs sd2d

Or whatever your disk was named as per OpenBSD's disk numbering scheme. (Look at the output from dmesg(8)
to see what your disk was named by OpenBSD.)

Now figure out where you are going to mount this new partition you just created. Say you want to put it on /u.
First, make the directory /u. Then, mount it.

mount /dev/sd2d /u

Finally, add it to /etc/fstab(5).

/dev/sd2d /u ffs rw 1 1

What if you need to migrate an existing directory like /usr/local? You should mount the new drive in /mnt and use
cpio -pdum to copy /usr/local to the /mnt directory. Edit the /etc/fstab(5) file to show that the /usr/local
partition is now /dev/sd2d (your freshly formatted partition). Example:

/dev/sd2d /usr/local ffs rw 1 1

Reboot into single user mode with boot -s, move the existing /usr/local to /usr/local-backup (or delete it if you
feel lucky) and create an empty directory /usr/local. Then reboot the system, and voila, the files are there!

14.4 - How is swap handled?

14.4.1 - About swap

Historically, all kinds of rules have been tossed about to guide administrators on how much swap to configure on
their machines. The problem, of course, is there are few "normal" application.

One non-obvious use for swap is to be a place the kernel can dump a copy of what is in core in the event of a
system panic for later analysis. For this to work, you must have a swap partition (not a swap file) at least as large
as your RAM. By default, the system will save a copy of this dump to /var/crash on reboot, so if you wish to
be able to do this automatically, you will need sufficient free space on /var. However, you can also bring the
system up single-user, and use savecore(8) to dump it elsewhere.

Many types of systems may be appropriately configured with no swap at all. For example, firewalls should not
swap in normal operation. Machines with flash storage generally should not swap. If your firewall is flash based,
you may benefit (slightly) by not allocating a swap partition, though in most other cases, a swap partition won't
actually hurt anything; most disks have more than enough space to allocate a little to swap.

There are all kinds of tips about optimizing swap (where on the disk, separate disks, etc.), but if you find yourself

http://www.openbsd.org/faq/faq14.html (9 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=newfs&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=dmesg&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=fstab&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=fstab&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=savecore&sektion=8

14 - Disk Setup

in a situation where optimizing swap is an issue, you probably need more RAM. In general, the best optimization
for swap is to not need it.

In OpenBSD, swap is managed with the swapctl(8) program, which adds, removes, lists and prioritizes swap
devices and files.

14.4.2 - Swapping to a partition

On OpenBSD, the 'b' partition of the boot drive is used by default and automatically for swap. No configuration is
needed for this to take place. If you do not wish to use swap on the boot disk, do not define a "b" partition. If you
wish to use swap on other partitions or on other disks, you need to define these partitions in /etc/fstab with
lines something like:

/dev/sd3b none swap sw 0 0
/dev/sd3d none swap sw 0 0

14.4.3 - Swapping to a file

(Note: if you are looking to swap to a file because you are getting "virtual memory exhausted" errors, you should
try raising the per-process limits first with csh's unlimit(1), or sh's ulimit(1).)

Sometimes, your initial guess about how much swap you need proves to be wrong, and you have to add additional
swap space, occasionally in a hurry (as in, "Geez, at the rate it is burning swap, we'll be wedged in five minutes").
If you find yourself in this position, adding swap space as a file on an existing file system can be a quick fix.

The file must not reside on a filesystem which has SoftUpdates enabled (they are disabled by default). To start
out, you can see how much swap you currently have and how much you are using with the swapctl(8) utility. You
can do this by using the command:

$ swapctl -l
Device 512-blocks Used Avail Capacity Priority
swap_device 65520 8 65512 0% 0

This shows the devices currently being used for swapping and their current statistics. In the above example there
is only one device named "swap_device". This is the predefined area on disk that is used for swapping. (Shows up
as partition b when viewing disklabels) As you can also see in the above example, that device isn't getting much
use at the moment, but for the purposes of this document, we will act as if an extra 32M is needed.

The first step to setting up a file as a swap device is to create the file. It's best to do this with the dd(1) utility.
Here is an example of creating the file /var/swap that is 32M in size.

$ sudo dd if=/dev/zero of=/var/swap bs=1k count=32768
32768+0 records in
32768+0 records out
33554432 bytes transferred in 20 secs (1677721 bytes/sec)

http://www.openbsd.org/faq/faq14.html (10 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=swapctl&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=unlimit&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ulimit&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=swapctl&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=dd&sektion=1

14 - Disk Setup

Once this has been done, we can turn on swapping to that device. Use the following command to turn on
swapping to this device

$ sudo chmod 600 /var/swap
$ sudo swapctl -a /var/swap

Now we need to check to see if it has been correctly added to the list of our swap devices.

$ swapctl -l
Device 512-blocks Used Avail Capacity Priority
swap_device 65520 8 65512 0% 0
/var/swap 65536 0 65536 0% 0
Total 131056 8 131048 0%

Now that the file is setup and swapping is being done, you need to add a line to your /etc/fstab file so that this file
is configured on the next boot time also. If this line is not added, your won't have this swap device configured.

$ cat /etc/fstab
/dev/wd0a / ffs rw 1 1
/var/swap /var/swap swap sw 0 0

14.5 - Soft Updates

Soft Updates is based on an idea proposed by Greg Ganger and Yale Patt and developed for FreeBSD by Kirk
McKusick. SoftUpdates imposes a partial ordering on the buffer cache operations which permits the requirement
for synchronous writing of directory entries to be removed from the FFS code. Thus, a large performance increase
is seen in disk writing performance.

Enabling soft updates must be done with a mount-time option. When mounting a partition with the mount(8)
utility, you can specify that you wish to have soft updates enabled on that partition. Below is a sample /etc/fstab
(5) entry that has one partition sd0a that we wish to have mounted with soft updates.

/dev/sd0a / ffs rw,softdep 1 1

Note to sparc users: Do not enable soft updates on sun4 or sun4c machines. These architectures support only a
very limited amount of kernel memory and cannot use this feature. However, sun4m machines are fine.

14.6 - How does OpenBSD/i386 boot?

The boot process for OpenBSD/i386 is not trivial, and understanding how it works can be useful to troubleshoot a
problem when things don't work. There are four key pieces to the boot process:

1. Master Boot Record (MBR): The Master Boot Record is the first physical sector (512 bytes) on the disk. It

http://www.openbsd.org/faq/faq14.html (11 of 35)4/29/2009 5:05:55 PM

http://www.ece.cmu.edu/~ganger/papers/CSE-TR-254-95/
http://www.mckusick.com/softdep/
http://www.mckusick.com/softdep/
http://www.openbsd.org/cgi-bin/man.cgi?query=mount&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=fstab&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=fstab&sektion=5

14 - Disk Setup

contains the primary partition table and a small program to load the Partition Boot Record (PBR). Note
that in some environments, the term "MBR" is used to refer to only the code portion of this first block on
the disk, rather than the whole first block (including the partition table). It is critical to understand the
meaning of "initialize the MBR" -- in the terminology of OpenBSD, it would involve rewriting the entire
MBR sector, not just the code, as it might on some systems. You will rarely want to do this. Instead, use
fdisk(8)'s "-u" command line option ("fdisk -u wd0").

While OpenBSD includes an MBR, you are not obliged to use it, as virtually any MBR can boot
OpenBSD. The MBR is manipulated by the fdisk(8) program, which is used both to edit the partition table,
and also to install the MBR code on the disk.

OpenBSD's MBR announces itself with the message:

Using drive 0, partition 3.

showing the disk and partition it is about to load the PBR from. In addition to the obvious, it also shows a
trailing period ("."), which indicates this machine is capable of using LBA translation to boot. If the
machine were incapable of using LBA translation, the above period would have have been replaced with a
semicolon (";"), indicating CHS translation:

Using Drive 0, Partition 3;

Note that the trailing period or semicolon can be used as an indicator of the "new" OpenBSD MBR,
introduced with OpenBSD 3.5.

2. Partition Boot Record (PBR): The Partition Boot Record, also called the PBR or biosboot(8) (after the
name of the file that holds the code) is the first physical sector of the OpenBSD partition of the disk. The
PBR is the "first-stage boot loader" for OpenBSD. It is loaded by the MBR code, and has the task of
loading the OpenBSD second-stage boot loader, boot(8). Like the MBR, the PBR is a very tiny section of
code and data, only 512 bytes, total. That's not enough to have a fully filesystem-aware application, so
rather than having the PBR locate /boot on the disk, the BIOS-accessible location of /boot is
physically coded into the PBR at installation time.

The PBR is installed by installboot(8), which is further described later in this document. The PBR
announces itself with the message:

Loading...

printing a dot for every file system block it attempts to load. Again, the PBR shows if it is using LBA or
CHS to load, if it has to use CHS translation, it displays a message with a semicolon:

Loading;...

The older (pre v3.5) biosboot(8) showed the message "reading boot...".
3. Second Stage Boot Loader, /boot: /boot is loaded by the PBR, and has the task of accessing the

OpenBSD file system through the machine's BIOS, and locating and loading the actual kernel. boot(8) also

http://www.openbsd.org/faq/faq14.html (12 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=biosboot&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=installboot&sektion=8&arch=i386

14 - Disk Setup

passes various options and information to the kernel.

boot(8) is an interactive program. After it loads, it attempts to locate and read /etc/boot.conf, if it
exists (which it does not on a default install), and processes any commands in it. Unless instructed
otherwise by /etc/boot.conf, it then gives the user a prompt:

probing: pc0 com0 com1 apm mem[636k 190M a20=on]
disk: fd0 hd0+
>> OpenBSD/i386 BOOT 3.02
boot>

It gives the user (by default) five seconds to start giving it other tasks, but if none are given before the
timeout, it starts its default behavior: loading the kernel, bsd, from the root partition of the first hard drive.
The second-stage boot loader probes (examines) your system hardware, through the BIOS (as the
OpenBSD kernel is not loaded). Above, you can see a few things it looked for and found:

❍ pc0 - the standard keyboard and video display of a i386 system.
❍ com0, com1 - Two serial ports
❍ apm - Advanced Power Management BIOS functions
❍ 636k 190M - The amount of conventional (below 1M) and extended (above 1M) memory it found
❍ fd0 hd0+ - The BIOS disk devices found, in this case, one floppy and one hard disk.

The '+' character after the "hd0" indicates that the BIOS has told /boot that this disk can be accessed via
LBA. When doing a first-time install, you will sometimes see a '*' after a hard disk -- this indicates a disk
that does not seem to have a valid OpenBSD disk label on it.

4. Kernel: /bsd: This is the goal of the boot process, to have the OpenBSD kernel loaded into RAM and
properly running. Once the kernel has loaded, OpenBSD accesses the hardware directly, no longer through
the BIOS.

So, the very start of the boot process could look like this:

Using drive 0, partition 3. <- MBR
Loading.... <- PBR
probing: pc0 com0 com1 apm mem[636k 190M a20=on] <- /boot
disk: fd0 hd0+
>> OpenBSD/i386 BOOT 3.02
boot>
booting hd0a:/bsd 4464500+838332 [58+204240+181750]=0x56cfd0
entry point at 0x100120

[using 386464 bytes of bsd ELF symbol table]
Copyright (c) 1982, 1986, 1989, 1991, 1993 <- Kernel
 The Regents of the University of California. All rights
reserved.
Copyright (c) 1995-2008 OpenBSD. All rights reserved. http://www.
OpenBSD.org

OpenBSD 4.4 (GENERIC) #1021: Tue Aug 12 17:16:55 MDT 2008

http://www.openbsd.org/faq/faq14.html (13 of 35)4/29/2009 5:05:55 PM

14 - Disk Setup

 deraadt@i386.openbsd.org:/usr/src/sys/arch/i386/compile/GENERIC
 ...

What can go wrong

● Bad/invalid/incompatible MBR: Usually, a used hard disk has some MBR code in place, but if the disk is
new or moved from a different platform, AND you don't answer "Yes" to the "Use entire disk" question of
the installation process, you may end up with a disk without a valid MBR, and thus, will not be bootable,
even though it has a valid partition table.

You may install the OpenBSD MBR on your hard disk using the fdisk program. Boot from your install
media, choose "Shell" to get a command prompt:

fdisk -u wd0

You may also install a specific MBR to disk using fdisk:

fdisk -u -f /usr/mdec/mbr wd0

which will install the file /usr/mdec/mbras your system's MBR. This particular file on a standard
OpenBSD install happens to be the standard MBR that is also built into fdisk, but any other MBR could be
specified here.

● Invalid /boot location installed in PBR: When installboot(8) installs the partition boot record, it writes
the block number and offset of /boot's inode into the PBR. Therefore, deleting and replacing /boot
without re-running installboot(8) will render your system unbootable, as the PBR will load whatever
happens to be pointed to by the inode specified in it, which will almost certainly no longer be the desired
second-stage boot loader! Since /boot is being read using BIOS calls, old versions of the PBR were
sensitive to BIOS disk translation. If you altered the drive's geometry (i.e., took it out of one computer that
uses CHS translation and moving it into one that uses LBA translation, or even changed a translation
option in your BIOS), it would have appeared to the BIOS to be in a different location (a different
numerical block must be accessed to get the same data from the disk), so you would have had to run
installboot(8) before the system could be rebooted. The new (as of OpenBSD 3.5 and later) PBR is much
more tolerant to changes in translation.

As the PBR is very small, its range of error messages is pretty limited, and somewhat cryptic. Most likely
messages are:

● ERR R -- BIOS returned an error when trying to read a block from the disk. Usually means exactly what it
says: your disk wasn't readable.

● ERR M -- An invalid magic(5) number was read in the second-stage bootloader's header. This generally
means whatever it was that was read in was NOT /boot, usually meaning installboot(8) was run
incorrectly, the /boot file was altered, or you have exceeded your BIOS's ability to read a large disk.

Other error messages are detailed in the biosboot(8) manual page.

http://www.openbsd.org/faq/faq14.html (14 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=magic&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=biosboot&sektion=8&arch=i386

14 - Disk Setup

For more information on the i386 boot process, see:

● boot_i386(8)
● http://www.ata-atapi.com/hiw.html Hale Landis' "How it Works" documents.

14.7 - What are the issues regarding large drives with OpenBSD?

OpenBSD supports both FFS and FFS2 (also known as UFS and UFS2) file systems. FFS is the historic
OpenBSD file system, FFS2 is new as of 4.3. Before looking at the limits of each system, we need to look at some
more general system limits.

Of course, the ability of file system and the abilities of particular hardware are two different things. A new 250G
IDE hard disk may have issues on older (pre >137G standards) interfaces (though for the most part, they work just
fine), and some very old SCSI adapters have been seen to have problems with more modern drives, and some
older BIOSs will hang when they encounter a modern sized hard disk. You must respect the abilities of your
hardware, of course.

Partition size and location limitations

Unfortunately, the full ability of the OS isn't available until AFTER the OS has been loaded into memory. The
boot process has to utilize (and is thus limited by) the system's boot ROM.

For this reason, the entire /bsd file (the kernel) must be located on the disk within the boot ROM addressable area.
This means that on some older i386 systems, the root partition must be completely within the first 504M, but
newer computers may have limits of 2G, 8G, 32G, 128G or more. It is worth noting that many relatively new
computers which support larger than 128G drives actually have BIOS limitations of booting only from within the
first 128G. You can use these systems with large drives, but your root partition must be within the space
supported by the boot ROM.

Note that it is possible to install a 40G drive on an old 486 and load OpenBSD on it as one huge partition, and
think you have successfully violated the above rule. However, it might come back to haunt you in a most
unpleasant way:

● You install on the 40G / partition. It works, because the base OS and all its files (including /bsd) are within
the first 504M.

● You use the system, and end up with more than 504M of files on it.
● You upgrade, build your own kernel, whatever, and copy your new /bsd over the old one.
● You reboot.
● You get a message such as "ERR M" or other problems on boot.

Why? Because when you copied "over" the new /bsd file, it didn't overwrite the old one, it got relocated to a new
location on the disk, probably outside the 504M range the BIOS supported. The boot loader was unable to fetch
the file /bsd, and the system hung.

To get OpenBSD to boot, the boot loaders (biosboot(8) and /boot in the case of i386/amd64) and the kernel (/

http://www.openbsd.org/faq/faq14.html (15 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=boot_i386&sektion=8&arch=i386
http://www.ata-atapi.com/hiw.html

14 - Disk Setup

bsd) must be within the boot ROM's supported range, and within their own abilities. To play it safe, the rule is
simple:

the entire root partition must be within the computer's BIOS (or boot ROM) addressable space.

Some non-i386 users think they are immune to this, however most platforms have some kind of boot ROM
limitation on disk size. Finding out for sure what the limit is, however, can be difficult.

This is another good reason to partition your hard disk, rather than using one large partition.

fsck(8) time and memory requirements

Another consideration with large file systems is the time and memory required to fsck(8) the file system after a
crash or power interruption. One should not put a 120G file system on a system with 32M of RAM and expect it
to successfully fsck(8) after a crash. A rough guideline is the system should have at least 1M of available memory
for every 1G of disk space to successfully fsck the disk. Swap can be used here, but at a very significant
performance penalty, so severe that it is usually unacceptable, except in special cases.

The time required to fsck the drive may become a problem as the file system size expands, but you only have to
fsck the disk space that is actually allocated to mounted filesystems. This is another reason NOT to allocate all
your disk space Just Because It Is There. Keeping file systems mounted RO or not mounted helps keep them from
needing to be fsck(8)ed after tripping over the power cord.

Don't forget that if you have multiple disks on the system, they could all end up being fsck(8)ed after a crash at
the same time, so they could require more RAM than a single disk.

By the time one gets to somewhat larger than 1TB file system with default fragment and block sizes, fsck will
require 1GB RAM to run, which is the application limit under OpenBSD. Larger fragments and/or blocks will
reduce the number of inodes, and allow for larger file systems.

FFS vs. FFS2

Using FFS, OpenBSD supports an individual file system of up to 231-1, or 2,147,483,647 sectors, and as each
sector is 512 bytes, that's a tiny amount less than 1T. FFS2 is capable of much larger file systems, though other
limits will be reached long before the file system limits will be reached.

The boot/installation kernels only support FFS, not FFS2, so key system partitions (/, /usr, /var, /tmp)
should not be FFS2, or severe maintenance problems can arise (there should be no reason for those partitions to
be that large, anyway). For this reason, very large partitions should only be used for "non-system" partitions, for
example, /home, /var/www/, /bigarray, etc.

Before doing upgrades, you will want to mark any FFS2 partitions as "noauto" to keep them from being (mis)
handled by the install kernel (which does not support FFS2 partitions).

Note that not all controllers and drivers support large disks. For example, ami(4) has a limit of 2TB per logical

http://www.openbsd.org/faq/faq14.html (16 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=fsck&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ami&sektion=4

14 - Disk Setup

volume. Many have just not been tested yet, for example, as of this writing, there are no >1TB IDE or SATA
drives available for testing, so we can't say for sure everything works perfectly yet.

14.8 - Installing Bootblocks - i386/amd64 specific

Modern versions of OpenBSD (3.5 and later) have a very robust boot loader that is much more indifferent to drive
geometries than the older boot loader was, however, they are sensitive to where the file /boot resides on the
disk. If you do something that causes boot(8) to be moved to a new place on the disk (actually, a new inode), you
will "break" your system, preventing it from booting properly. To fix your boot block so that you can boot
normally, just put a boot floppy in your drive (or use a bootable CD-ROM) and at the boot prompt, type "b hd0a:/
bsd" to force it to boot from the first hard disk (and not the floppy). Your machine should come up normally. You
now need to reinstall the first-stage boot loader (biosboot(8)) based on the position of the /boot file, using the
installboot(8) program.

Our example will assume your boot disk is sd0 (but for IDE it would be wd0, etc.):

cd /usr/mdec; ./installboot /boot biosboot sd0

If a newer version of bootblocks are required, you will need to compile these yourself. To do so simply:

cd /sys/arch/i386/stand/
make && make install
cd /usr/mdec; cp ./boot /boot
./installboot /boot biosboot sd0 (or whatever device your hard
disk is)

14.9 - Preparing for disaster: Backing up and Restoring from tape

Introduction:

If you plan on running what might be called a production server, it is advisable to have some form of backup in
the event one of your fixed disk drives fails.

This information will assist you in using the standard dump(8)/restore(8) utilities provided with OpenBSD. A
more advanced backup utility called "Amanda" is also available through packages for backing up multiple servers
to one tape drive. In most environments dump(8)/restore(8) is enough. However, if you have a need to backup
multiple machines, Amanda might be worth investigating.

The device examples in this document are for a configuration that uses both SCSI disks and tape. In a production
environment, SCSI disks are recommended over IDE due to the way in which they handle bad blocks. That is not
to say this information is useless if you are using an IDE disk or other type of tape drive, your device names will
simply differ slightly. For example sd0a would be wd0a in an IDE based system.

Backing up to tape:

http://www.openbsd.org/faq/faq14.html (17 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=biosboot&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=installboot&sektion=8&arch=i386
http://www.openbsd.org/cgi-bin/man.cgi?query=dump&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=restore&sektion=8
http://www.amanda.org/
http://www.openbsd.org/cgi-bin/man.cgi?query=dump&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=restore&sektion=8

14 - Disk Setup

Backing up to tape requires knowledge of where your file systems are mounted. You can determine how your
filesystems are mounted using the mount(8) command at your shell prompt. You should get output similar to this:

mount
/dev/sd0a on / type ffs (local)
/dev/sd0h on /usr type ffs (local)

In this example, the root (/) filesystem resides physically on sd0a which indicates SCSI fixed disk 0, partition a.
The /usr filesystem resides on sd0h, which indicates SCSI fixed disk 0, partition h.

Another example of a more advanced mount table might be:

mount
/dev/sd0a on / type ffs (local)
/dev/sd0d on /var type ffs (local)
/dev/sd0e on /home type ffs (local)
/dev/sd0h on /usr type ffs (local)

In this more advanced example, the root (/) filesystem resides physically on sd0a. The /var filesystem resides on
sd0d, the /home filesystem on sd0e and finally /usr on sd0h.

To backup your machine you will need to feed dump the name of each fixed disk partition. Here is an example of
the commands needed to backup the simpler mount table listed above:

/sbin/dump -0au -f /dev/nrst0 /dev/rsd0a
/sbin/dump -0au -f /dev/nrst0 /dev/rsd0h
mt -f /dev/rst0 rewind

For the more advanced mount table example, you would use something similar to:

/sbin/dump -0au -f /dev/nrst0 /dev/rsd0a
/sbin/dump -0au -f /dev/nrst0 /dev/rsd0d
/sbin/dump -0au -f /dev/nrst0 /dev/rsd0e
/sbin/dump -0au -f /dev/nrst0 /dev/rsd0h
mt -f /dev/rst0 rewind

You can review the dump(8) man page to learn exactly what each command line switch does. Here is a brief
description of the parameters used above:

● 0 - Perform a level 0 dump, get everything
● a - Attempt to automatically determine tape media length
● u - Update the file /etc/dumpdates to indicate when backup was last performed
● f - Which tape device to use (/dev/nrst0 in this case)

http://www.openbsd.org/faq/faq14.html (18 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=mount&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=dump&sektion=8

14 - Disk Setup

Finally which partition to backup (/dev/rsd0a, etc.)

The mt(1) command is used at the end to rewind the drive. Review the mt man page for more options (such as
eject).

If you are unsure of your tape device name, use dmesg to locate it. An example tape drive entry in dmesg might
appear similar to:

st0 at scsibus0 targ 5 lun 0: <ARCHIVE, Python 28388-XXX, 5.28>

You may have noticed that when backing up, the tape drive is accessed as device name "nrst0" instead of the
"st0" name that is seen in dmesg. When you access st0 as nrst0 you are accessing the same physical tape
drive but telling the drive to not rewind at the end of the job and access the device in raw mode. To back up
multiple file systems to a single tape, be sure you use the non-rewind device, if you use a rewind device (rst0)
to back up multiple file systems, you'll end up overwriting the prior filesystem with the next one dump tries to
write to tape. You can find a more elaborate description of various tape drive devices in the dump man page.

If you wanted to write a small script called "backup", it might look something like this:

echo " Starting Full Backup..."
/sbin/dump -0au -f /dev/nrst0 /dev/rsd0a
/sbin/dump -0au -f /dev/nrst0 /dev/rsd0d
/sbin/dump -0au -f /dev/nrst0 /dev/rsd0e
/sbin/dump -0au -f /dev/nrst0 /dev/rsd0h
echo
echo -n " Rewinding Drive, Please wait..."
mt -f /dev/rst0 rewind
echo "Done."
echo

If scheduled nightly backups are desired, cron(8) could be used to launch your backup script automatically.

It will also be helpful to document (on a scrap of paper) how large each file system needs to be. You can use "df
-h" to determine how much space each partition is currently using. This will be handy when the drive fails and
you need to recreate your partition table on the new drive.

Restoring your data will also help reduce fragmentation. To ensure you get all files, the best way of backing up is
rebooting your system in single user mode. File systems do not need to be mounted to be backed up. Don't forget
to mount root (/) r/w after rebooting in single user mode or your dump will fail when trying to write out
dumpdates. Enter "bsd -s" at the boot> prompt for single user mode.

Viewing the contents of a dump tape:

After you've backed up your file systems for the first time, it would be a good idea to briefly test your tape and be
sure the data on it is as you expect it should be.

http://www.openbsd.org/faq/faq14.html (19 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=mt&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=cron&sektion=8

14 - Disk Setup

You can use the following example to review a catalog of files on a dump tape:

/sbin/restore -tvs 1 -f /dev/rst0

This will cause a list of files that exist on the 1st partition of the dump tape to be listed. Following along from the
above examples, 1 would be your root (/) file system.

To see what resides on the 2nd tape partition and send the output to a file, you would use a command similar to:

/sbin/restore -tvs 2 -f /dev/rst0 > /home/me/list.txt

If you have a mount table like the simple one, 2 would be /usr, if yours is a more advanced mount table 2 might
be /var or another fs. The sequence number matches the order in which the file systems are written to tape.

Restoring from tape:

The example scenario listed below would be useful if your fixed drive has failed completely. In the event you
want to restore a single file from tape, review the restore man page and pay attention to the interactive mode
instructions.

If you have prepared properly, replacing a disk and restoring your data from tape can be a very quick process. The
standard OpenBSD install/boot floppy already contains the required restore utility as well as the binaries required
to partition and make your new drive bootable. In most cases, this floppy and your most recent dump tape is all
you'll need to get back up and running.

After physically replacing the failed disk drive, the basic steps to restore your data are as follows:

● Boot from the OpenBSD install/boot floppy. At the menu selection, choose Shell. Write protect and insert
your most recent back up tape into the drive.

● Using the fdisk(8) command, create a primary OpenBSD partition on this newly installed drive. Example:

fdisk -e sd0

See fdisk FAQ for more info.
● Using the disklabel command, recreate your OpenBSD partition table inside that primary OpenBSD

partition you just created with fdisk. Example:

disklabel -E sd0

(Don't forget swap, see disklabel FAQ for more info)
● Use the newfs command to build a clean file system on each partition you created in the above step.

Example:

newfs /dev/rsd0a

http://www.openbsd.org/faq/faq14.html (20 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=fdisk&sektion=8&arch=i386

14 - Disk Setup

newfs /dev/rsd0h

● Mount your newly prepared root (/) file system on /mnt. Example:

mount /dev/sd0a /mnt

● Change into that mounted root file system and start the restore process. Example:

cd /mnt
restore -rs 1 -f /dev/rst0

● You'll want this new disk to be bootable, use the following to write a new MBR to your drive. Example:

fdisk -i sd0

● In addition to writing a new MBR to the drive, you will need to install boot blocks to boot from it. The
following is a brief example:

cp /usr/mdec/boot /mnt/boot
/usr/mdec/installboot -v /mnt/boot /usr/mdec/biosboot sd0

● Your new root file system on the fixed disk should be ready enough so you can boot it and continue
restoring the rest of your file systems. Since your operating system is not complete yet, be sure you boot
back up with single user mode. At the shell prompt, issue the following commands to unmount and halt the
system:

umount /mnt
halt

● Remove the install/boot floppy from the drive and reboot your system. At the OpenBSD boot> prompt,
issue the following command:

boot> bsd -s

The bsd -s will cause the kernel to be started in single user mode which will only require a root (/) file
system.

● Assuming you performed the above steps correctly and nothing has gone wrong you should end up at a
prompt asking you for a shell path or press return. Press return to use sh. Next, you'll want to remount root
in r/w mode as opposed to read only. Issue the following command:

mount -u -w /

● Once you have re-mounted in r/w mode you can continue restoring your other file systems. Example:

(simple mount table)

http://www.openbsd.org/faq/faq14.html (21 of 35)4/29/2009 5:05:55 PM

14 - Disk Setup

mount /dev/sd0h /usr; cd /usr; restore -rs 2 -f /dev/rst0

(more advanced mount table)
mount /dev/sd0d /var; cd /var; restore -rs 2 -f /dev/rst0
mount /dev/sd0e /home; cd /home; restore -rs 3 -f /dev/rst0
mount /dev/sd0h /usr; cd /usr; restore -rs 4 -f /dev/rst0

You could use "restore rvsf" instead of just rsf to view names of objects as they are extracted from the
dump set.

● Finally after you finish restoring all your other file systems to disk, reboot into multiuser mode. If
everything went as planned your system will be back to the state it was in as of your most recent back up
tape and ready to use again.

14.10 - Mounting disk images in OpenBSD

To mount a disk image (ISO images, disk images created with dd, etc.) in OpenBSD you must configure a vnd(4)
device. For example, if you have an ISO image located at /tmp/ISO.image, you would take the following steps to
mount the image.

vnconfig svnd0 /tmp/ISO.image
mount -t cd9660 /dev/svnd0c /mnt

Notice that since this is an ISO-9660 image, as used by CDs and DVDs, you must specify type of cd9660 when
mounting it. This is true, no matter what type, e.g. you must use type ext2fs when mounting Linux disk images.

To unmount the image use the following commands.

umount /mnt
vnconfig -u svnd0

For more information, refer to the vnconfig(8) man page.

14.11 - Help! I'm getting errors with IDE DMA!

DMA IDE transfers, supported by pciide(4) are unreliable with many combinations of hardware. Until recently,
most "mainstream" operating systems that claimed to support DMA transfers with IDE drives did not ship with
that feature active by default due to unreliable hardware. Now many of these same machines are being used for
OpenBSD.

OpenBSD is aggressive and attempts to use the highest DMA Mode it can configure. This will cause corruption of
data transfers in some configurations because of buggy motherboard chipsets, buggy drives, and/or noise on the
cables. Luckily, Ultra-DMA modes protect data transfers with a CRC to detect corruption. When the Ultra-DMA
CRC fails, OpenBSD will print an error message and try the operation again.

http://www.openbsd.org/faq/faq14.html (22 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=vnd&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=vnconfig&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=pciide&sektion=4

14 - Disk Setup

wd2a: aborted command, interface CRC error reading fsbn 64 of 64-
79
(wd2 bn 127; cn 0 tn 2 sn 1), retrying

After failing a couple times, OpenBSD will downgrade to a slower (hopefully more reliable) Ultra-DMA mode. If
Ultra-DMA mode 0 is hit, then the drive downgrades to PIO mode.

UDMA errors are often caused by low quality or damaged cables. Cable problems should usually be the first
suspect if you get many DMA errors or unexpectedly low DMA performance. It is also a bad idea to put the CD-
ROM on the same channel with a hard disk.

If replacing cables does not resolve the problem and OpenBSD does not successfully downgrade, or the process
causes your machine to lock hard, or causes excessive messages on the console and in the logs, you may wish to
force the system to use a lower level of DMA or UDMA by default. This can be done by using UKC or config(8)
to change the flags on the wd(4) device.

14.13 - RAID options for OpenBSD

RAID (Redundant Array of Inexpensive Disks) gives an opportunity to use multiple drives to give better
performance, capacity and/or redundancy than one can get out of a single drive alone. While a full discussion of
the benefits and risks of RAID are outside the scope of this article, there are a couple points that are important to
make here:

● RAID has nothing to do with backup.
● By itself, RAID will not eliminate down-time.

If this is new information to you, this is not a good starting point for your exploration of RAID.

Software Options

OpenBSD includes RAIDframe, a software RAID solution. Documentation for it can be found in the following
places:

● Disk Optimization, RAID
● RAIDframe Homepage
● man page for raidctl(8)
● man page for raid(4)

The root partition can be directly mirrored by OpenBSD using the "Autoconfiguration" option of RAIDframe.

OpenBSD 3.7-stable and later also includes mirroring as a feature of the ccd(4) driver. This system is built into
the GENERIC kernel and is in the bsd.rd kernel of some platforms (amd64, hppa, hppa64, i386), so it can be
much easier to use, though it has some limitations regarding rebuilding the array. See:

http://www.openbsd.org/faq/faq14.html (23 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=wd&sektion=4
http://www.pdl.cmu.edu/RAIDframe/
http://www.openbsd.org/cgi-bin/man.cgi?query=raidctl&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=raid&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=ccd&sektion=4

14 - Disk Setup

● ccd(4) man page
● ccdconfig(8) man page

Hardware Options

Many OpenBSD platforms include support for various hardware RAID products. The options vary by platform,
see the appropriate hardware support page (listed here).

Another option available for many platforms is one of the many products which make multiple drives act as a
single IDE or SCSI drive, and are then plugged into a standard IDE or SCSI adapter. These devices can work on
virtually any hardware platform that supports either SCSI or IDE.

Some manufacturers of these products:

● Arco
● Accusys
● Maxtronic
● Infortrend

(Note: these are just products that OpenBSD users have reported using -- this is not any kind of endorsement, nor
is it an exhaustive list.)

Non-Options

An often asked question on the mail lists is "Are the low-cost IDE or SATA RAID controllers (such as those
using Highpoint, Promise or Adaptec HostRAID chips) supported?". The answer is "No". These cards and chips
are not true hardware RAID controllers, but rather BIOS-assisted boot of a software RAID. As OpenBSD already
supports software RAID in a hardware-independent way, there isn't much desire among the OpenBSD developers
to implement special support for these cards.

Almost all on-board SATA or IDE "RAID" controllers are this software-based style, and will typically work fine
as a SATA or IDE controller using the standard IDE driver (pciide(4)), but are not going to work as a hardware
RAID system on OpenBSD.

14.14 - Why does df(1) tell me I have over 100% of my disk used?

People are sometimes surprised to find they have negative available disk space, or more than 100% of a
filesystem in use, as shown by df(1).

When a filesystem is created with newfs(8), some of the available space is held in reserve from normal users. This
provides a margin of error when you accidently fill the disk, and helps keep disk fragmentation to a minimum.
Default for this is 5% of the disk capacity, so if the root user has been carelessly filling the disk, you may see up
to 105% of the available capacity in use.

http://www.openbsd.org/faq/faq14.html (24 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ccd&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=ccdconfig&sektion=8
http://www.openbsd.org/plat.html
http://www.openbsd.org/plat.html
http://www.arcoide.com/
http://www.accusys.com.tw/
http://www.maxtronic.com/
http://www.infortrend.com/
http://www.openbsd.org/mail.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pciide&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=df&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=newfs&sektion=8

14 - Disk Setup

If the 5% value is not appropriate for you, you can change it with the tunefs(8) command.

14.15 - Recovering partitions after deleting the disklabel

If you have a damaged partition table, there are various things you can attempt to do to recover it.

Firstly, panic. You usually do so anyways, so you might as well get it over with. Just don't do anything stupid.
Panic away from your machine. Then relax, and see if the steps below won't help you out.

A copy of the disklabel for each disk is saved in /var/backups as part of the daily system maintenance.
Assuming you still have the var partition, you can simply read the output, and put it back into disklabel.

In the event that you can no longer see that partition, there are two options. Fix enough of the disc so you can see
it, or fix enough of the disc so that you can get your data off. Depending on what happened, one or other of those
may be preferable (with dying discs you want the data first, with sloppy fingers you can just have the label)

The first tool you need is scan_ffs(8) (note the underscore, it isn't called "scanffs"). scan_ffs(8) will look through
a disc, and try and find partitions and also tell you what information it finds about them. You can use this
information to recreate the disklabel. If you just want /var back, you can recreate the partition for /var, and
then recover the backed up label and add the rest from that.

disklabel(8) will update both the kernel's understanding of the disklabel, and then attempt to write the label to
disk. Therefore, even if area of the disk containing the disklabel is unreadable, you will be able to mount(8) it
until the next reboot.

14.16 - Can I access data on filesystems other than FFS?

Yes. Other supported filesystems include: ext2 (Linux), ISO9660 and UDF (CD-ROM, DVD media), FAT (MS-
DOS and Windows), NFS, NTFS (Windows), AmigaDOS. Some of them have limited, for instance read-only,
support. Note that FreeBSD's UFS2 filesystem is not supported.

We will give a general overview on how to use one of these filesystems under OpenBSD. To be able to use a
filesystem, it must be mounted. For details and mount options, please consult the mount(8) manual page, and that
of the mount command for the filesystem you will be mounting, e.g. mount_msdos, mount_ext2fs, ...

First, you must know on which device your filesystem is located. This can be simply your first hard disk, wd0 or
sd0, but it may be less obvious. All recognized and configured devices on your system are mentioned in the
output of the dmesg(1) command: a device name, followed by a one-line description of the device. For example,
my first CD-ROM drive is recognized as follows:

cd0 at scsibus0 targ 0 lun 0: <COMPAQ, DVD-ROM LTD163, GQH3> SCSI0
5/cdrom removable

http://www.openbsd.org/faq/faq14.html (25 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=tunefs&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=scan_ffs
http://www.openbsd.org/cgi-bin/man.cgi?query=disklabel;sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=mount;sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=mount&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=dmesg&sektion=1

14 - Disk Setup

For a much shorter list of available disks, you can use sysctl(8). The command

sysctl hw.disknames

will show all disks currently known to your system, for example:

hw.disknames=cd0,cd1,wd0,fd0,cd2

At this point, it is time to find out which partitions are on the device, and in which partition the desired filesystem
resides. Therefore, we examine the device using disklabel(8). The disklabel contains a list of partitions, with a
maximum number of 16. Partition c always indicates the entire device. Partitions a-b and d-p are used by
OpenBSD. Partitions i-p may be automatically allocated to file systems of other operating systems. In this case,
I'll be viewing the disklabel of my hard disk, which contains a number of different filesystems.

NOTE: OpenBSD was installed after the other operating systems on this system, and during the install a
disklabel containing partitions for the native as well as the foreign filesystems was installed on the disk. However,
if you install foreign filesystems after the OpenBSD disklabel was already installed on the disk, you need to add
or modify them manually afterwards. This will be explained in this subsection.

disklabel wd0

using MBR partition 2: type A6 off 20338290 (0x1365672) size
29318625 (0x1bf5de1)
/dev/rwd0c:
type: ESDI
disk: ESDI/IDE disk
label: ST340016A
flags:
bytes/sector: 512
sectors/track: 63
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 16383
total sectors: 78165360
rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

16 partitions:
size offset fstype [fsize bsize cpg]
 a: 408366 20338290 4.2BSD 2048 16384 16 # Cyl
20176*- 20581

http://www.openbsd.org/faq/faq14.html (26 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=disklabel&sektion=8

14 - Disk Setup

 b: 1638000 20746656 swap # Cyl
20582 - 22206
 c: 78165360 0 unused 0 0 #
Cyl 0 - 77544
 d: 4194288 22384656 4.2BSD 2048 16384 16 # Cyl
22207 - 26367
 e: 409248 26578944 4.2BSD 2048 16384 16 # Cyl
26368 - 26773
 f: 10486224 26988192 4.2BSD 2048 16384 16 # Cyl
26774 - 37176
 g: 12182499 37474416 4.2BSD 2048 16384 16 # Cyl
37177 - 49262*
 i: 64197 63 unknown #
Cyl 0*- 63*
 j: 20274030 64260 unknown #
Cyl 63*- 20176*
 k: 1975932 49656978 MSDOS # Cyl
49262*- 51223*
 l: 3919797 51632973 unknown # Cyl
51223*- 55111*
 m: 2939832 55552833 ext2fs # Cyl
55111*- 58028*
 n: 5879727 58492728 ext2fs # Cyl
58028*- 63861*
 o: 13783707 64372518 ext2fs # Cyl
63861*- 77535*

As can be seen in the above output, the OpenBSD partitions are listed first. Next to them are a number of ext2
partitions and one MSDOS partition, as well as a few 'unknown' partitions. On i386 and amd64 systems, you can
usually find out more about those using the fdisk(8) utility. For the curious reader: partition i is a maintenance
partition created by the vendor, partition j is a NTFS partition and partition l is a Linux swap partition.

Once you have determined which partition it is you want to use, you can move to the final step: mounting the
filesystem contained in it. Most filesystems are supported in the GENERIC kernel: just have a look at the kernel
configuration file, located in the /usr/src/sys/arch/<arch>/conf directory. However, some are not, e.
g. the NTFS support is experimental and therefore not included in GENERIC. If you want to use one of the
filesystems not supported in GENERIC, you will need to build a custom kernel.

When you have gathered the information needed as mentioned above, it is time to mount the filesystem. Let's
assume a directory /mnt/otherfs exists, which we will use as a mount point where we will mount the desired
filesystem. In this example, we will mount the ext2 filesystem in partition m:

mount -t ext2fs /dev/wd0m /mnt/otherfs

If you plan to use this filesystem regularly, you may save yourself some time by inserting a line for it in /etc/

http://www.openbsd.org/faq/faq14.html (27 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=fdisk&sektion=8&arch=i386

14 - Disk Setup

fstab, for example something like:

/dev/wd0m /mnt/otherfs ext2fs rw,noauto,nodev,nosuid 0 0

Notice the 0 values in the fifth and sixth field. This means we do not require the filesystem to be dumped, and
checked using fsck. Generally, those are things you want to have handled by the native operating system
associated with the filesystem.

14.16.1 - The partitions are not in my disklabel! What should I do?

If you install foreign filesystems on your system (often the result of adding a new operating system) after you
have already installed OpenBSD, a disklabel will already be present, and it will not be updated automatically to
contain the new foreign filesystem partitions. If you wish to use them, you need to add or modify these partitions
manually using disklabel(8).

As an example, I have modified one of my existing ext2 partitions: using Linux's fdisk program, I've reduced the
size of the 'o' partition (see disklabel output above) to 1G. We will be able to recognize it easily by its starting
position (offset: 64372518) and size (13783707). Note that these values are sector numbers, and that using sector
numbers (not megabytes or any other measure) is the most exact and safest way of reading this information.

Before the change, the partition looked like this using OpenBSD's fdisk(8) utility (leaving only relevant output):

fdisk wd0
. . .
Offset: 64372455 Signature: 0xAA55
 Starting Ending LBA Info:
 #: id C H S - C H S [start: size]
--
 0: 83 4007 1 1 - 4864 254 63 [64372518: 13783707]
Linux files*
. . .

As you can see, the starting position and size are exactly those reported by disklabel(8) earlier. (Dont' be confused
by the value indicated by "Offset": it is referring to the starting position of the extended partition in which the
ext2 partition is contained.)

After changing the partition's size from Linux, it looks like this:

fdisk wd0
. . .
Offset: 64372455 Signature: 0xAA55
 Starting Ending LBA Info:
 #: id C H S - C H S [start: size]
--
 0: 83 4007 1 1 - 4137 254 63 [64372518: 2104452]

http://www.openbsd.org/faq/faq14.html (28 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=disklabel&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=fdisk&sektion=8&arch=i386

14 - Disk Setup

Linux files*
. . .

Now this needs to be changed using disklabel(8). For instance, you can issue disklabel -e wd0, which will
invoke an editor specified by the EDITOR environment variable (default is vi). Within the editor, change the last
line of the disklabel to match the new size:

 o: 2104452 64372518 ext2fs

Save the disklabel to disk when finished. Now that the disklabel is up to date again, you should be able to mount
your partitions as described above.

You can follow a very similar procedure to add new partitions.

14.17 - Can I use a flash memory device with OpenBSD?

14.17.1 - Flash memory as a portable storage device

Normally, the memory device should be recognized upon plugging it into a port of your machine. Shortly after
inserting it, a number of messages are written to the console by the kernel. For instance, when I plug in my USB
flash memory device, I see the following on my console:

umass0 at uhub1 port 1 configuration 1 interface 0
umass0: LEXR PLUG DRIVE LEXR PLUG DRIVE, rev 1.10/0.01, addr 2
umass0: using SCSI over Bulk-Only
scsibus2 at umass0: 2 targets
sd0 at scsibus2 targ 1 lun 0: <LEXAR, DIGITAL FILM, /W1.> SCSI2 0/
direct removable
sd0: 123MB, 123 cyl, 64 head, 32 sec, 512 bytes/sec, 251904 sec
total

These lines indicate that the umass(4) (USB mass storage) driver has been attached to the memory device, and
that it is using the SCSI system. The last two lines are the most important ones: they are saying to which device
node the memory device has been attached, and what the total amount of storage space is. If you somehow missed
these lines, you can still see them afterwards with the dmesg(1) command. The reported CHS geometry is a rather
fictitious one, as the flash memory is being treated like any regular SCSI disk.

We will discuss two scenarios below.

The device is new/empty and you want to use it with OpenBSD only

You will need to initialize a disklabel onto the device, and create at least one partition. Please read Using
OpenBSD's disklabel and the disklabel(8) manual page for details about this.

http://www.openbsd.org/faq/faq14.html (29 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=umass&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=dmesg&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=disklabel&sektion=8

14 - Disk Setup

In this example I created just one partition a in which I will place a FFS filesystem:

newfs sd0a
Warning: inode blocks/cyl group (125) >= data blocks (62) in last
 cylinder group. This implies 1984 sector(s) cannot be
allocated.
/dev/rsd0a: 249856 sectors in 122 cylinders of 64 tracks, 32
sectors
 122.0MB in 1 cyl groups (122 c/g, 122.00MB/g, 15488 i/g)
super-block backups (for fsck -b #) at:
 32,

Let's mount the filesystem we created in the a partition on /mnt/flashmem. Create the mount point first if it
does not exist.

mkdir /mnt/flashmem
mount /dev/sd0a /mnt/flashmem

You received the memory device from someone with whom you want to exchange data

There is a considerable chance the other person is not using OpenBSD, so there may be a foreign filesystem on
the memory device. Therefore, we will first need to find out which partitions are on the device, as described in
FAQ 14 - Foreign Filesystems.

disklabel sd0

/dev/rsd0c:
type: SCSI
disk: SCSI disk
label: DIGITAL FILM
flags:
bytes/sector: 512
sectors/track: 32
tracks/cylinder: 64
sectors/cylinder: 2048
cylinders: 123
total sectors: 251904
rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

16 partitions:

http://www.openbsd.org/faq/faq14.html (30 of 35)4/29/2009 5:05:55 PM

14 - Disk Setup

size offset fstype [fsize bsize cpg]
 c: 251904 0 unused 0 0 #
Cyl 0 - 122
 i: 250592 32 MSDOS #
Cyl 0*- 122*

As can be seen in the disklabel output above, there is only one partition i, containing a FAT filesystem created on
a Windows machine. As usual, the c partition indicates the entire device.

Let's now mount the filesystem in the i partition on /mnt/flashmem.

mount -t msdos /dev/sd0i /mnt/flashmem

Now you can start using it just like any other disk.

WARNING: You should always unmount the filesystem before unplugging the memory device. If you don't,
the filesystem may be left in an inconsistent state, which may result in data corruption.

Upon detaching the memory device from your machine, you will again see the kernel write messages about this to
the console:

umass0: at uhub1 port 1 (addr 2) disconnected
sd0 detached
scsibus2 detached
umass0 detached

14.17.2 - Flash memory as bootable storage

One can also use flash memory in various forms as bootable disk with OpenBSD. This can be done with both
USB devices (assuming your computer can boot from a USB flash device, not all can), or with a non-USB (i.e.,
CF) device with an IDE or SATA adapter. (Non-USB devices attached with a USB adapter are treated as USB
devices). In some cases, you may actually use a device in both ways (load the media in a USB adapter, but run it
in an IDE adapter)

A flash device attached to a USB port will show up as a sd(4) SCSI-like device. When attached to an IDE adapter,
it will show up as a wd(4) device.

In the case of flash media in an IDE adapter, it can be booted from any system that could boot from an IDE hard
disk. In every sense, the system sees the flash media as an IDE disk. Simply configure the hardware appropriately,
then install OpenBSD to the flash disk as normal.

In the case of booting from a USB device, your system must be able to boot from the USB device without being
distracted by other devices on the system. Note that if your intention is to make a portable boot environment on a
USB device, the USB device will show up as a SCSI disk, usually sd0. However, if you plug this device into a
system which already has a few SCSI-like disks on it, it will probably end up with a different identifier, which

http://www.openbsd.org/faq/faq14.html (31 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=sd&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=wd&sektion=4

14 - Disk Setup

will complicate carrying the flash device from system to system, as you will have to update /etc/fstab.

Some notes:

● Speed: In general, flash devices are much slower than hard disks, especially when it comes to writing.
Using soft updates will help this considerably, as will using the "noatime" mount option.

● "Write fatigue": Much has been written about the finite number of times an individual flash cell can be
rewritten before failure. Practically speaking, however, there are many ways a flash device can fail, write
fatigue is just one of them. Modern flash devices will verify writes, and in the event of failure, will
automatically remap the failed sectors with one of the many spare sectors. Most users with most flash
devices will not have to worry about "write fatigue". You would probably experience more down time due
to failure of "clever" tricks done to avoid writing to the flash drive than you will by just using the drives as
read-write media.

● Reliability: The fact that flash media has no moving parts has prompted many people to assume the flash
media is inherently more reliable than hard disks. It is probably not wise to assume that switching to flash
means you don't need to worry about data loss or drive failure. People have reported considerable variation
in flash media quality, it is probably best to consider flash storage as a silent and low-power alternative to
disk rather than a failure-free storage media.

● Creating a bootable USB flash drive: While a USB device can only be booted on a machine which can
boot from USB drives, it can be created on any machine with supported USB hardware. You will, of
course, be unable to test your work until you can get to a USB bootable system.

● Going from IDE to USB interfaces: As the media will be readable and writable from both USB and IDE
adapters, you can use create the media for booting in an IDE adapter but maintain it in a USB adapter on a
different machine (or the other way around).

● Mixing OpenBSD and other partitions on one device: OpenBSD treats the flash disk as any other disk
so one can use fdisk(8) to partition a flash device, as you would any hard disk. You can then have
OpenBSD file systems on one partition, and use another partition for another file system, for example,
FAT32. However, not all OSs treat USB devices as "equals". Windows, at least, will not attempt to use or
create a partition that doesn't start at the beginning of the device, nor will the Windows partitioning tools
allow you to partition the disk, though it will respect existing partitions. So, if you wish to create a USB
flash drive that is bootable with OpenBSD, but also functions as a FAT32-capable device on other OSs,
you would want to do something like this:

1. Partition the media with OpenBSD's fdisk, creating a partition of the type you desire for Windows
to use at the beginning of the disk, and an OpenBSD partition at the end of the disk.

2. Install OpenBSD as normal to the OpenBSD fdisk partition, don't forget to flag the OpenBSD
partition as "Active" for booting.

3. Format the other partition. This can be (and perhaps should be) done on the "target" OS (Windows,
in this case).

Note that if the second partition's type is chosen appropriately, it is possible to have OpenBSD access both
partitions on the device. So, a Windows user could populate the FAT32 partition with MP3 files which
could be played when they booted from the OpenBSD partition.

14.18 - Optimizing disk performance

Disk performance is a significant factor in the overall speed of your computer. It becomes increasingly important
when your computer is hosting a multi-user environment (users of all kinds, from those who log-in interactively

http://www.openbsd.org/faq/faq14.html (32 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=fdisk&sektion=8

14 - Disk Setup

to those who see you as a file-server or a web-server). Data storage constantly needs attention, especially when
your partitions run out of space or when your disks fail. OpenBSD has several options to increase the speed of
your disk operations and provide fault tolerance.

● CCD - Concatenated Disk Driver.
● RAID
● Soft Updates
● Size of the namei() cache

14.18.1 - CCD

The first option is the use of ccd(4), the Concatenated Disk Driver. This allows you to join several partitions into
one virtual disk (and thus, you can make several disks look like one disk). This concept is similar to that of LVM
(logical volume management), which is found in many commercial Unix flavors.

If you are running GENERIC, ccd is already enabled (in /usr/src/sys/conf/GENERIC). If you have
customized your kernel, you may need to return it to your kernel configuration. Either way, a line such as this
should be in your configuration file:

pseudo-device ccd 4 # concatenated disk devices

The above example gives you up to 4 ccd devices (virtual disks). Now you need to figure out which partitions on
your real disks you want to dedicate to ccd. Use disklabel to mark these partitions as type 'ccd'. On some
architectures, disklabel may not allow you to do this. In this case, mark them as 'ffs'.

If you are using ccd to gain performance by striping, note that you will not get optimum performance unless you
use the same model of disks with the same disklabel settings.

Edit /etc/ccd.conf to look something like this: (for more information on configuring ccd, look at ccdconfig(8))

Configuration file for concatenated disk devices
#
ccd ileave flags component devices
ccd0 16 none /dev/sd2e /dev/sd3e

To make your changes take effect, run

ccdconfig -C

As long as /etc/ccd.conf exists, ccd will automatically configure itself upon boot. Now, you have a new disk,
ccd0, a combination of /dev/sd2e and /dev/sd3e. Just use disklabel on it like you normally would to make the
partition or partitions you want to use. Again, don't use the 'c' partition as an actual partition that you put stuff on.
Make sure your usable partitions are at least one cylinder off from the beginning of the disk.

http://www.openbsd.org/faq/faq14.html (33 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ccd&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=ccdconfig&sektion=8

14 - Disk Setup

14.18.2 - RAID

Another solution is raid(4), which will have you use raidctl(8) to control your raid devices. OpenBSD's RAID is
based upon Greg Oster's NetBSD port of the CMU RAIDframe software. OpenBSD has support for RAID levels
of 0, 1, 4, and 5.

With raid, as with ccd, support must be in the KERNEL. Unlike ccd, support for RAID is not found in GENERIC,
so it must be compiled into your kernel (RAID support adds some 500K to the size of an i386 kernel).

pseudo-device raid 4 # RAIDframe disk device

Read the raid(4) and raidctl(8) man pages to get full details. There are many options and possible configurations
available, and a detailed explanation is beyond the scope of this document.

14.18.3 - Soft updates

Another tool that can be used to speed up your system is softupdates. One of the slowest operations in the
traditional BSD file system is updating metainfo (which happens, among other times, when you create or delete
files and directories). Softupdates attempts to update metainfo in RAM instead of writing to the hard disk each
and every single metainfo update. Another effect of this is that the metainfo on disk should always be complete,
although not always up to date. So, a system crash should not require fsck(8) upon boot up, but simply a
background version of fsck that makes changes to the metainfo in RAM (a la softupdates). This means rebooting a
server is much faster, as you don't have to wait for fsck! (OpenBSD does not have this feature yet.) You can read
more about softupdates in the Softupdates FAQ entry.

14.18.4 - Size of the namei() cache

The name-to-inode translation (a.k.a., namei()) cache controls the speed of pathname to inode(5) translation. A
reasonable way to derive a value for the cache, should a large number of namei() cache misses be noticed with a
tool such as systat(1), is to examine the system's current computed value with sysctl(8), (which calls this
parameter "kern.maxvnodes") and to increase this value until either the namei() cache hit rate improves or it
is determined that the system does not benefit substantially from an increase in the size of the namei() cache.
After the value has been determined, you can set it at system startup time with sysctl.conf(5).

14.19 - Why aren't we using async mounts?

Question: "I simply do "mount -u -o async /" which makes one package I use (which insists on touching a few
hundred things from time to time) usable. Why is async mounting frowned upon and not on by default (as it is in
some other unixen)? Isn't it a much simpler, and therefore, a safer way of improving performance in some
applications?"

Answer: "Async mounts are indeed faster than sync mounts, but they are also less safe. What happens in case of a
power failure? Or a hardware problem? The quest for speed should not sacrifice the reliability and the stability of
the system. Check the man page for mount(8)."

http://www.openbsd.org/faq/faq14.html (34 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=raid&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=raidctl&sektion=8
http://www.cs.usask.ca/staff/oster/raid.html
http://www.pdl.cmu.edu/RAIDframe/
http://www.openbsd.org/cgi-bin/man.cgi?query=raid&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=raidctl&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=fsck&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=inode&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=systat&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=mount&sektion=8

14 - Disk Setup

 async All I/O to the file system should be done
asynchronously.
 This is a dangerous flag to set since it does not
guaran-
 tee to keep a consistent file system structure on the
 disk. You should not use this flag unless you are pre-
 pared to recreate the file system should your system
 crash. The most common use of this flag is to speed up
 restore(8) where it can give a factor of two speed in-
 crease.

On the other hand, when you are dealing with temp data that you can recreate from scratch after a crash, you can
gain speed by using a separate partition for that data only, mounted async. Again, do this only if you don't mind
the loss of all the data in the partition when something goes wrong. For this reason, mfs(8) partitions are mounted
asynchronously, as they will get wiped and recreated on a reboot anyway.

[FAQ Index] [To Section 13 - Multimedia] [To Section 15 - Packages and Ports]

 www@openbsd.org
$OpenBSD: faq14.html,v 1.187 2009/04/07 00:41:14 nick Exp $

http://www.openbsd.org/faq/faq14.html (35 of 35)4/29/2009 5:05:55 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=mfs&sektion=8
mailto:www@openbsd.org

15 - The OpenBSD packages and ports system

[FAQ Index] [To Section 14 - Disk Setup]

15 - The OpenBSD packages and ports system

Table of Contents

● 15.1 - Introduction
● 15.2 - Package management

❍ 15.2.1 - How does it work?
❍ 15.2.2 - Making things easy
❍ 15.2.3 - Finding packages
❍ 15.2.4 - Installing new packages
❍ 15.2.5 - Listing installed packages
❍ 15.2.6 - Updating installed packages
❍ 15.2.7 - Removing installed packages
❍ 15.2.8 - Incomplete package installation or removal

● 15.3 - Working with ports
❍ 15.3.1 - How does it work?
❍ 15.3.2 - Fetching the ports tree
❍ 15.3.3 - Configuration of the ports system
❍ 15.3.4 - Searching the ports tree
❍ 15.3.5 - Straightforward installation: a simple example
❍ 15.3.6 - Cleaning up after a build
❍ 15.3.7 - Uninstalling a port's package
❍ 15.3.8 - Using flavors and subpackages

● 15.4 - FAQ
❍ 15.4.1 - I'm getting all kinds of crazy errors. I just can't seem to get this ports stuff

working at all.
❍ 15.4.2 - The latest version of my Top-Favorite-Software is not available!
❍ 15.4.3 - Why is there no package for my Top-Favorite-Software?
❍ 15.4.4 - Why is there no port of my Top-Favorite-Software?
❍ 15.4.5 - Why is my Top-Favorite-Software not part of the base system?
❍ 15.4.6 - What should I use: packages or ports?

http://www.openbsd.org/faq/faq15.html (1 of 26)4/29/2009 5:05:59 PM

http://www.openbsd.org/index.html

15 - The OpenBSD packages and ports system

❍ 15.4.7 - How do I tweak these ports to have maximum performance?
❍ 15.4.8 - I submitted a new port/an update weeks ago. Why isn't it committed?

● 15.5 - Reporting problems
● 15.6 - Helping us

15.1 - Introduction

There are a lot of third party applications available which one might want to use on an OpenBSD
system. To make this software easier to install and manage, plus to help it comply with OpenBSD's
policy and goals, the third party software is ported to OpenBSD. This porting effort can involve many
different things. Examples are: making the software use the standard OpenBSD directory layout (e.g.
configuration files go into /etc), conforming to OpenBSD's shared library specifications, making the
software more secure whenever possible, etc.

The end result of the porting effort are ready-to-install binary packages. The aim of the package system
is to keep track of which software gets installed, so that it may at any time be updated or removed very
easily. This way, no unnecessary files are left behind, and users can keep their systems clean. The
package system also helps ensure nothing is deleted by accident, causing software to stop functioning
properly. Another advantage is that users rarely need to compile software from source, as packages
have already been compiled and are available and ready to be used on an OpenBSD system. In minutes,
a large number of packages can be fetched and installed, with everything in the right place.

The packages and ports collection does NOT go through the same thorough security audit that is
performed on the OpenBSD base system. Although we strive to keep the quality of the packages
collection high, we just do not have enough human resources to ensure the same level of
robustness and security.

15.2 - Package Management

15.2.1 - How does it work?

Packages are the pre-compiled binaries of some of the most used third party software. Packages can be
managed easily with the help of several utilities, also referred to as the pkg* tools:

● pkg_add(1) - a utility for installing and upgrading software packages.
● pkg_delete(1) - a utility for deleting previously installed software packages.
● pkg_info(1) - a utility for displaying information about software packages.
● pkg_create(1) - a utility for creating software packages.

http://www.openbsd.org/faq/faq15.html (2 of 26)4/29/2009 5:05:59 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=pkg_add&sektion=1&manpath=OpenBSD+4.4
http://www.openbsd.org/cgi-bin/man.cgi?query=pkg_delete&sektion=1&manpath=OpenBSD+4.4
http://www.openbsd.org/cgi-bin/man.cgi?query=pkg_info&sektion=1&manpath=OpenBSD+4.4
http://www.openbsd.org/cgi-bin/man.cgi?query=pkg_create&sektion=1&manpath=OpenBSD+4.4

15 - The OpenBSD packages and ports system

In order to run properly, an application X may require that other applications Y and Z be installed.
Application X is said to be dependent on these other applications, which is why Y and Z are called
dependencies of X. In turn, Y may require other applications P and Q, and Z may require application R
to function properly. This way, a whole dependency tree is formed.

Packages look like simple .tgz bundles. Basically they are just that, but there is one crucial difference:
they contain some extra packing information. This information is used by pkg_add(1) for several
purposes:

● Different checks: has the package already been installed or does it conflict with other installed
packages or file names?

● Dependencies which are not yet present on the system, are automatically fetched and installed,
before proceeding with the installation of the package.

● Information about the package(s) is recorded in a central repository, by default located in /var/
db/pkg/. This will, among other things, prevent the dependencies of a package from being
deleted before the package itself has been deleted. This helps ensure that an application cannot be
accidentally broken by a careless user.

15.2.2 - Making things easy: PKG_PATH

You can make things really easy by using the PKG_PATH environment variable. Just point it to your
favorite location, and pkg_add(1) will automatically look there for any package you specify, and also
fetch and install the necessary dependencies of this package automatically.

A list of possible locations to fetch packages from is given in the following section.

Example 1: fetching from your CDROM, assuming you mounted it on /mnt/cdrom

$ export PKG_PATH=/mnt/cdrom/4.4/packages/`machine -a`/

Example 2: fetching from a nearby FTP mirror

$ export PKG_PATH=ftp://your.ftp.mirror/pub/OpenBSD/4.4/
packages/`machine -a`/

It's usually a good idea to add a line similar to the above examples to your ~/.profile. As with the
classic PATH variable, you can specify multiple locations, separated by colons. Prior to OpenBSD 4.4,
every path in the PKG_PATH variable MUST end in a slash (/). That way, pkg_add(1) can split the
path correctly even if it holds URL schemes containing colons. If the first entry in PKG_PATH fails, the
next one will be tried, and so on, until the package is found. If all entries fail, an error is produced.

http://www.openbsd.org/faq/faq15.html (3 of 26)4/29/2009 5:05:59 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=pkg_add&sektion=1&manpath=OpenBSD+4.4
http://www.openbsd.org/orders.html
http://www.openbsd.org/ftp.html

15 - The OpenBSD packages and ports system

Notice the use of machine(1) in the above command lines. This automatically substitutes your installed
OpenBSD "application architecture", which is usually, but not always, your platform name. Of course, if
you are using snapshots, you will replace "4.4" with "snapshots".

15.2.3 - Finding packages

A large collection of pre-compiled packages is available for the most common architectures. Just look
for your package in one of these places:

● On one of the three CD-ROMs, depending on your architecture. The CD-ROMs carry only the
most commonly used, freely distributable packages for the most commonly used platforms.

● On the FTP mirror servers. Packages are located in the /pub/OpenBSD/4.4/packages
directory. From there, packages are broken down depending on architecture.

● In the package lists on the OpenBSD website:
❍ Packages for OpenBSD 4.4
❍ Packages for OpenBSD 4.3
❍ Packages for OpenBSD 4.2

If you have the ports tree on your system, you can quickly find the package you are looking for as
explained in Searching the ports tree.

You will notice that certain packages are available in a few different varieties, formally called flavors.
Others are pieces of the same application which may be installed separately. They are called
subpackages. This will be detailed further in Using flavors and subpackages but flavor basically means
they are configured with different sets of options. Currently, many packages have flavors, for example:
database support, support for systems without X, or network additions like SSL and IPv6. Every flavor
of a package will have a different suffix in its package name. For detailed information about package
names, please refer to packages-specs(7).

Note: Not all possible packages are necessarily available on the FTP servers! Some applications simply
don't work on all architectures. Some applications can not be distributed via FTP (or CDROM) for
licensing reasons. There may also be many possible combinations of flavors of a port, and the OpenBSD
project just does not have the resources to build them all. If you need a combination which is not
available, you will have to build the port from source. For more information on how to do that, read
Using flavors and subpackages in the Ports section of this document.

15.2.4 - Installing new packages

To install packages, the utility pkg_add(1) is used. If you have made things easy for yourself by setting
the PKG_PATH environment variable, you can just call pkg_add(1) with the package name, as in the

http://www.openbsd.org/faq/faq15.html (4 of 26)4/29/2009 5:05:59 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=machine&sektion=1
http://www.openbsd.org/orders.html
http://www.openbsd.org/ftp.html
http://www.openbsd.org/4.4_packages/
http://www.openbsd.org/4.3_packages/
http://www.openbsd.org/4.2_packages/
http://www.openbsd.org/cgi-bin/man.cgi?query=packages-specs&sektion=7
http://www.openbsd.org/cgi-bin/man.cgi?query=pkg_add&sektion=1&manpath=OpenBSD+4.4

15 - The OpenBSD packages and ports system

following basic example.

$ sudo pkg_add -v screen-4.0.3p1
parsing screen-4.0.3p1
installed /etc/screenrc from /usr/local/share/examples/
screen/screenrc | 71%
screen-4.0.3p1: complete

In this example the -v flag was used to give a more verbose output. This option is not needed but it is
helpful for debugging and was used here to give a little more insight into what pkg_add(1) is actually
doing. Notice the message mentioning /etc/screenrc. Specifying multiple -v flags will produce even
more verbose output.

Using pkg_add(1) in interactive mode

Since OpenBSD 3.9, pkg_add(1) has an interactive mode, which is enabled by invoking it with the -i
flag, and which causes it to ask you questions when it cannot make decisions by itself. For example, if
you don't know the version number of a package beforehand, you can try something like:

$ sudo pkg_add -i screen
Ambiguous: screen could be screen-4.0.3p1 screen-4.0.3p1-
shm screen-4.0.3p1-static
Choose one package
 0: <None>
 1: screen-4.0.3p1
 2: screen-4.0.3p1-shm
 3: screen-4.0.3p1-static
Your choice: 1
screen-4.0.3p1: complete

For some packages, some important additional information will be given about the configuration or use
of the application on an OpenBSD system. Since it is important, it will be displayed whether or not you
use the -v flag. Consider the following example:

$ sudo pkg_add ghostscript-fonts-8.11
ghostscript-fonts-8.11: complete
You may wish to update your font path for /usr/local/share/
ghostscript/fonts
--- ghostscript-fonts-8.11 -------------------
To install these fonts for X11, just make sure that the
fontpath
lists the 75dpi or 100dpi bitmap fonts before the

http://www.openbsd.org/faq/faq15.html (5 of 26)4/29/2009 5:05:59 PM

15 - The OpenBSD packages and ports system

ghostscript fonts,
and make sure you have the string ":unscaled" appended to
the bitmap
font's fontpath. This way, the bitmap fonts will be used if
they
match, and the Type 1 versions will be used if the font
needs to be
scaled. Below is the relevant section from a typical xorg.
conf file.

 FontPath "/usr/X11R6/lib/X11/fonts/misc/"
 FontPath "/usr/X11R6/lib/X11/fonts/75dpi/:unscaled"
 FontPath "/usr/X11R6/lib/X11/fonts/100dpi/:unscaled"
 FontPath "/usr/local/lib/X11/fonts/ghostscript/"
 FontPath "/usr/X11R6/lib/X11/fonts/Type1/"

Let us now continue with an example of a package which has dependencies:

$ sudo pkg_add -v tin-1.8.2p0
parsing tin-1.8.2p0
Dependencies for tin-1.6.2 resolve to: gettext-0.14.6,
libutf8-0.8, pcre-6.4p1, libiconv-1.9.2p3 (todo: libiconv-
1.9.2p3,gettext-0.14.6,pcre-6.4p1,libutf8-0.8)
tin-1.8.2p0:parsing libiconv-1.9.2p3
tin-1.8.2p0:libiconv-1.9.2p3: complete
tin-1.8.2p0:parsing gettext-0.14.6
Dependencies for gettext-0.14.6 resolve to: expat-2.0.0,
libiconv-1.9.2p3 (todo: expat-2.0.0)
tin-1.8.2p0:parsing expat-2.0.0
tin-1.8.2p0:expat-2.0.0: complete
tin-1.8.2p0:gettext-0.14.6: complete
tin-1.8.2p0:parsing pcre-6.4p1
tin-1.8.2p0:pcre-6.4p1: complete
tin-1.8.2p0:parsing libutf8-0.8
tin-1.8.2p0:libutf8-0.8: complete
tin-1.8.2p0: complete

Again we added the -v flag to see more of what is happening. Upon investigating the packing
information, dependencies are found and they are installed first. Somewhere in the middle you can see
the gettext package being installed, which depends on libiconv. Before installing gettext, its packing
information is examined and it is verified whether libiconv has already been installed.

It is possible to specify multiple package names on one line, which then all get installed at once, along

http://www.openbsd.org/faq/faq15.html (6 of 26)4/29/2009 5:05:59 PM

15 - The OpenBSD packages and ports system

with possible dependencies.

If for some reason you decide not to use PKG_PATH, it is also possible to specify the absolute location
of a package on the command line. This absolute location may be a local path, or a URL referring to
FTP, HTTP, or SCP locations. Let's consider installation via FTP in the next example:

$ sudo pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.4/
packages/`machine -a`/screen-4.0.3p1.tgz
screen-4.0.3p1: complete

In this example the -v flag wasn't used, so only needed messages are shown. Notice that the complete
filename was entered by adding a .tgz suffix. You can also skip this suffix as in the previous examples
since it is auto-completed by pkg_add(1).

Note: Not all architectures have the same packages available. Some ports do not work on certain
architectures, and performance limits the number of packages that can be built on others.

For safety, if you are installing a package which you had installed earlier (or an older version of it) and
removed, pkg_add(1) will not overwrite configuration files which have been modified. Instead, it will
inform you about this as follows (only when using the -v flag, however!):

$ sudo pkg_add -v screen-4.0.3p1
parsing screen-4.0.3p1
The existing file /etc/screenrc has NOT been
changed** | 71%
It does NOT match the sample file /usr/local/share/examples/
screen/screenrc
You may wish to update it manually
screen-4.0.3p1: complete

Sometimes you may encounter an error like the one in the following example:

$ sudo pkg_add xv-3.10ap4
xv-3.10ap4:jpeg-6bp3: complete
xv-3.10ap4:png-1.2.14p0: complete
xv-3.10ap4:tiff-3.8.2p0: complete
Can't install xv-3.10ap4: lib not found X11.9.0
Even by looking in the dependency tree:
 tiff-3.8.2p0, jpeg-6bp3, png-1.2.14p0
Maybe it's in a dependent package, but not tagged with
@lib ?
(check with pkg_info -K -L)

http://www.openbsd.org/faq/faq15.html (7 of 26)4/29/2009 5:05:59 PM

15 - The OpenBSD packages and ports system

If you are still running 3.6 packages, update them.

There is pkg_add(1) nicely installing dependencies, when all of a sudden it aborts the installation of xv.
This is another safety precaution which is available since OpenBSD 3.7. The packing information
bundled in the package includes information about shared libraries that the package expects to be
installed, system libraries as well as third party libraries. If one of the required libraries cannot be found,
the package is not installed because it would not function anyway.

To solve this type of conflict, you must find out what to install in order to get the required libraries on
your system. There are several things to check:

● You may have older packages installed: an older version of the required library is present. In this
case, upgrade these packages.

● Your system may be incomplete: you did not install one of the file sets, which contains the
required library. Just add the required file set.

● Your system may be out of date: you have an older version of the required library. Boot the
installer (as detailed in FAQ 4), and choose to (U)pgrade your complete system.

15.2.5 - Listing installed packages

You can see a list of installed packages by using the pkg_info(1) utility.

$ pkg_info
aterm-0.4.2p1 color vt102 terminal emulator with
transparency support
bzip2-1.0.4 block-sorting file compressor,
unencumbered
expat-2.0.0 XML 1.0 parser written in C
fluxbox-0.9.15.1p0 window manager based on the original
Blackbox code
gettext-0.14.6 GNU gettext
imlib2-1.3.0 image manipulation library
jpeg-6bp3 IJG's JPEG compression utilities
libiconv-1.9.2p3 character set conversion library
libltdl-1.5.22p1 GNU libtool system independent dlopen
wrapper
libungif-4.1.4p0 tools and library routines for working
with GIF images
libutf8-0.8 provides UTF-8 locale support
mutt-1.4.2.2i tty-based e-mail client
pcre-6.4p1 perl-compatible regular expression
library

http://www.openbsd.org/faq/faq15.html (8 of 26)4/29/2009 5:05:59 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=pkg_info&sektion=1&manpath=OpenBSD+4.4

15 - The OpenBSD packages and ports system

png-1.2.14p0 library for manipulating PNG images
screen-4.0.3p1 multi-screen window manager
tcsh-6.14.00p1 extended C-shell with many useful
features
tiff-3.8.2p0 tools and library routines for working
with TIFF images
tin-1.8.2p0 threaded NNTP and spool based UseNet
newsreader

When given an installed package name (or a location of a package which is to be installed), pkg_info(1)
will show more detailed information about that specific package.

15.2.6 - Updating installed packages

Since OpenBSD 3.7, it is possible to update existing packages by using the -r (= replace) switch to
pkg_add(1). OpenBSD 3.8 introduced the -u switch to pkg_add(1), which has been turned into a true
update mechanism in 3.9.

Let's say you had an older version of unzip installed before upgrading this box from OpenBSD 4.3 to
4.4. Now you can easily upgrade to the newer 4.4 package as follows:

$ sudo pkg_add -u unzip
unzip-5.52 (extracting): complete
unzip-5.51 (deleting): complete
unzip-5.52 (installing): complete
Clean shared items: complete

When a package has dependencies, they are also examined for updates. Invoking pkg_add(1) with the -u
flag and no package name will try to update all installed packages.

Note: The -u switch relies on the PKG_PATH environment variable. If it is not set, pkg_add(1) will not
be able to find updates.

Starting with OpenBSD 4.2, having several entries in PKG_PATH does no longer mean all entries will
be tried for update operations. Instead, pkg_add(1) will stop at the first path with matching candidates.

If you had a configuration file belonging to the old version, which you modified, it will be left
untouched by default. You can, however, replace it with the default configuration file of the new
version, by calling pkg_add(1) with the -c flag.

15.2.7 - Removing installed packages

http://www.openbsd.org/faq/faq15.html (9 of 26)4/29/2009 5:05:59 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=pkg_add&sektion=1&manpath=OpenBSD+4.4

15 - The OpenBSD packages and ports system

To delete a package, simply take the proper name of the package as shown by pkg_info(1) (see Listing
installed packages above) and use pkg_delete(1) to remove the package. In the example below, the
screen package is being removed. Notice that on some occasions there are instructions of extra items that
need to be removed that pkg_delete(1) did not remove for you. As with the pkg_add(1) utility, you can
use the -v flag to get more verbose output.

$ sudo pkg_delete screen
screen-4.0.3p1: complete
Clean shared items: complete

Note: Often, it is not necessary to specify the version numbers and flavors with the package name, since
pkg_delete(1) will usually be able to find the full name by itself. You need to specify the complete
package name (in the example, that is screen-4.0.3p1) only if ambiguity is possible due to multiple
installed packages with the specified name. In that case pkg_delete(1) cannot know which package to
delete.

For safety, pkg_delete(1) will not remove configuration files if they have been modified. Instead it will
inform you about this as follows:

$ sudo pkg_delete screen
screen-4.0.3p1: complete
Clean shared items: complete
--- screen-4.0.3p1 -------------------
You should also remove /etc/screenrc (which was modified)

If you prefer to have those configuration files removed automatically, you can do so by using the -c flag.

15.2.8 - Incomplete package installation or removal

In some odd cases, you may find that a package was not added or deleted completely, because of
conflicts with other files. The incomplete installation is usually marked with "partial-" prepended to the
package name. This can, for instance, happen when you coincidentally press CTRL+C during
installation:

$ sudo pkg_add screen-4.0.3p1
screen-4.0.3p1:
complete
7%
Adjusting md5 for /usr/local/info/screen.info-3 from
49fb3fe1cc3a3b0057518459811b6dac to
3b9c7811244fb9f8d83bb27d3a0f60d8

http://www.openbsd.org/faq/faq15.html (10 of 26)4/29/2009 5:05:59 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=pkg_delete&sektion=1&manpath=OpenBSD+4.4

15 - The OpenBSD packages and ports system

/usr/sbin/pkg_add: Installation of screen-4.0.3p1 failed ,
partial installation recorded as partial-screen-4.0.3p1

It is always a good idea to remove partial packages from your system, and to fix potential problems that
lead to this failure. It is often an indication that you do not have a clean system with everything installed
from packages, but possibly packages mixed up with other software installed straight from source.

15.3 - Working with ports

As mentioned in the introduction, packages are compiled from the ports tree. In this section we will
explain how the ports tree works, when you should use it and how you can use it.

IMPORTANT NOTE: The ports tree is meant for advanced users. Everyone is encouraged to use the
pre-compiled binary packages. Do NOT ask beginner questions on the mailing lists like "How can I
get the ports tree working?". If you have questions about the ports tree, it is assumed that you have read
the manual pages and this FAQ, and that you are able to work with it.

15.3.1 - How does it work?

The ports tree, a concept originally borrowed from FreeBSD, is a set of Makefiles, one for each third
party application, for controlling

● where and how to fetch the source of the software,
● which other software it depends upon,
● how to alter the sources (if necessary),
● how to configure and build it,
● how to test it (optional),
● how to install it.

Apart from the Makefile, each port also contains at least the following:

● a PLIST or packing list, which contains instructions for package creation once the application has
been built,

● a DESCR or description of the application,
● a distfile, containing distribution file checksums and size.

All this information is kept in a directory hierarchy under /usr/ports. This hierarchy contains three
special subdirectories:

● distfiles/ - where the ports system stores software distribution sets after downloading.
● infrastructure/ - the main directory of the ports infrastructure, containing all necessary

http://www.openbsd.org/faq/faq15.html (11 of 26)4/29/2009 5:05:59 PM

http://www.freebsd.org/

15 - The OpenBSD packages and ports system

scripts and makefiles.
● packages/ - contains all binary packages built by the ports system.

The other subdirectories all form different application categories, which contain the subdirectories of the
actual ports. Complex ports may be organized to an even deeper level, for example if they have a core
part and a set of extensions, or a stable and a snapshot version of the application. Every port directory
must contain a pkg/ subdirectory containing packing list(s) and description file(s). There may also be
patches/ and files/ subdirectories, for source patches and additional files, respectively.

When a user issues make(1) in the subdirectory of a specific port, the system will recursively walk its
dependency tree, check whether the required dependencies are installed, build and install any missing
dependencies, and then continue the build of the desired port. All of the building happens inside the
working directory that the port creates. This is either a subdirectory of the port's main directory, in which
case it is recognized by its prefix "w-", or a subdirectory of ${WRKOBJDIR}, if the WRKOBJDIR
variable has been set (see Configuration of the ports system).

Note: Ports are never directly installed on your system! They use a fake installation directory.
Everything that gets installed there, is bundled together into a package (which is stored in the
packages/ subdirectory of the ports tree as mentioned earlier). Installing a port really means: creating
a package, and then installing that package!

More information about the ports system may be found in these manual pages:

● ports(7) - describes the different stages (make targets) of port installation, the use of flavors and
subpackages and some other options.

● bsd.port.mk(5) - in depth information about all the make targets, variables, the fake (installation
directory) framework, etc.

15.3.2 - Fetching the ports tree

Before continuing, you must read the section about NOT mixing up your OpenBSD system and ports
tree. Once you have decided which flavor of the ports tree you want, you can get the ports tree from
different sources. The table below gives an overview of where you can find the different flavors, and in
which form. An 'x' marks availability and '-' means it is not available through that specific source.

Source Form Flavor

-release -stable snapshots -current

CD-ROM .tar.gz x - - -

FTP mirrors .tar.gz x - x -

http://www.openbsd.org/faq/faq15.html (12 of 26)4/29/2009 5:05:59 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=make&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ports&sektion=7
http://www.openbsd.org/cgi-bin/man.cgi?query=bsd.port.mk&sektion=5
http://www.openbsd.org/orders.html
http://www.openbsd.org/ftp.html

15 - The OpenBSD packages and ports system

AnonCVS cvs checkout x x - x

On the CD-ROM and FTP mirrors, look for a file named ports.tar.gz. You want to untar this file
in the /usr directory, which will create /usr/ports, and all the directories under it. For example:

$ cd /tmp
$ ftp ftp://ftp.openbsd.org/pub/OpenBSD/4.4/ports.tar.gz
$ cd /usr
$ sudo tar xzf /tmp/ports.tar.gz

The snapshots available on the FTP mirrors are generated daily from the -current ports tree. You will
find the snapshots in the pub/OpenBSD/snapshots/ directory. If you are using a snapshot of the
ports tree, you should have installed a matching snapshot of OpenBSD. Make sure you keep your ports
tree and your OpenBSD system in sync!

For more information about obtaining the ports tree via AnonCVS, please read the AnonCVS page
which contains a list of available servers and a number of examples.

15.3.3 - Configuration of the ports system

NOTE: This section introduces some additional global settings for building applications from ports.
You can skip this section, but then you will be required to perform many of the make(1) statements in
the examples as root.

Because the OpenBSD project does not have the resources to fully review the source code of all
software in the ports tree, you can configure the ports system to take a few safety precautions. The ports
infrastructure is able to perform all building as a regular user, and perform only those steps that require
superuser privileges as root. Examples are the fake and install make targets. However, because
root privileges are always required at some point, the ports system will not save you when you decide to
build a malicious application.

● You can set up sudo(8) and have the ports system use it for tasks requiring superuser
permissions. Just add a line to /etc/mk.conf containing

SUDO=/usr/bin/sudo

● You can modify the ownerships of the ports tree so that you can write there as a regular user. In
this case, the regular user has been added to the wsrc group, and the underlying directories are
made group writable.

chgrp -R wsrc /usr/ports

http://www.openbsd.org/faq/faq15.html (13 of 26)4/29/2009 5:05:59 PM

http://www.openbsd.org/anoncvs.html
http://www.openbsd.org/anoncvs.html
http://www.openbsd.org/cgi-bin/man.cgi?query=sudo&sektion=8

15 - The OpenBSD packages and ports system

find /usr/ports -type d -exec chmod g+w {} \;

● You can have the ports system use systrace(1) by adding the following to /etc/mk.conf

USE_SYSTRACE=Yes

This enforces the build procedure to stay inside allowed directories, and prohibits writing in
illegal places, thereby considerably reducing the risk of a damaged system. Note that the use of
systrace(1) adds about 20% overhead in build time.

It is possible to use a read-only ports tree by separating directories that are written to during port
building:

● The working directory of ports. This is controlled by the WRKOBJDIR variable, which specifies
the directory which will contain the working directories.

● The directory containing distribution files. This is controlled by the DISTDIR variable.
● The directory containing newly built binary packages. This is controlled by the
PACKAGE_REPOSITORY variable.

For example, you could add the following lines to /etc/mk.conf

WRKOBJDIR=/usr/obj/ports
DISTDIR=/usr/distfiles
PACKAGE_REPOSITORY=/usr/packages

If desired, you can also change the ownership of these directories to your local username and group, so
that the ports system can create underlying working directories as a regular user.

15.3.4 - Searching the ports tree

Once you have the ports tree in place on your system, it becomes very easy to search for software. Just
use make search key="searchkey", as shown in the following example.

$ cd /usr/ports
$ make search key=rsnapshot
Port: rsnapshot-1.2.9
Path: net/rsnapshot
Info: remote filesystem snapshot utility
Maint: Sigfred Haversen
Index: net
L-deps:

http://www.openbsd.org/faq/faq15.html (14 of 26)4/29/2009 5:05:59 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=systrace&sektion=1

15 - The OpenBSD packages and ports system

B-deps: :net/rsync
R-deps: :net/rsync
Archs: any

The search result gives a nice overview of each application that is found: the port name, the path to the
port, a one-line description, the port's maintainer, keywords related to the port, library/build/runtime
dependencies, and architectures on which the port is known to work.

This mechanism, however, is a very basic one, which just runs awk(1) on the ports index file. Since
OpenBSD 4.0, a new port called "sqlports" has been created, allowing very fine-grained searching using
SQL. It is a SQLite database, but basically just about any database format can be created using the ports
infrastructure. The sqlports port includes the script used to generate the database, which could be used as
a basis to generate databases in different formats.

Just pkg_add(1) the sqlports package, and in this case, the sqlite3 package to get started. A sample
session could look like:

$ sqlite3 /usr/local/share/sqlports
SQLite version 3.3.12
Enter ".help" for instructions
sqlite> SELECT FULLPKGNAME,COMMENT FROM Ports WHERE COMMENT
LIKE '%statistics%';
Guppi-0.40.3p1|GNOME-based plot program with statistics
capabilities
mailgraph-1.12|a RRDtool frontend for Postfix statistics
R-2.4.1|clone of S, a powerful math/statistics/graphics
language
py-probstat-0.912p0|probability and statistics utilities
for Python
darkstat-3.0.540p1|network statistics gatherer with graphs
pfstat-2.2p0|packet filter statistics visualization
tcpstat-1.4|report network interface statistics
wmwave-0.4p2|Window Maker dockapp to display wavelan
statistics
diffstat-1.43p0|accumulates and displays statistics from a
diff file
sqlite>

The above is still a very basic search. With SQL, just about anything can be searched for, including
dependencies, configure flags, shared libraries, etc.

15.3.5 - Straightforward installation: a simple example

http://www.openbsd.org/faq/faq15.html (15 of 26)4/29/2009 5:05:59 PM

15 - The OpenBSD packages and ports system

For clarity's sake, let's consider a simple example: rsnapshot. This application has one dependency:
rsync.

$ cd /usr/ports/net/rsnapshot
$ make install
===> Checking files for rsnapshot-1.2.9
>> rsnapshot-1.2.9.tar.gz doesn't seem to exist on this
system.
>> Fetch http://www.rsnapshot.org/downloads/rsnapshot-1.2.9.
tar.gz.
100% |**|
173 KB 00:02
>> Size matches for /usr/ports/distfiles/rsnapshot-1.2.9.
tar.gz
>> Checksum OK for rsnapshot-1.2.9.tar.gz. (sha1)
===> rsnapshot-1.2.9 depends on: rsync-2.6.9 - not found
===> Verifying install for rsync-2.6.9 in net/rsync
===> Checking files for rsync-2.6.9
>> rsync-2.6.9.tar.gz doesn't seem to exist on this system.
>> Fetch ftp://ftp.samba.org/pub/rsync/old-versions/rsync-
2.6.9.tar.gz.
100% |**|
792 KB 00:31
>> Size matches for /usr/ports/distfiles/rsync-2.6.9.tar.gz
>> Checksum OK for rsync-2.6.9.tar.gz. (sha1)
===> Verifying specs: c
===> found c.40.3
===> Extracting for rsync-2.6.9
===> Patching for rsync-2.6.9
===> Configuring for rsync-2.6.9
 [...snip...]
===> Building for rsync-2.6.9
 [...snip...]
===> Faking installation for rsync-2.6.9
 [...snip...]
===> Building package for rsync-2.6.9
Link to /usr/ports/packages/i386/ftp/rsync-2.6.9.tgz
Link to /usr/ports/packages/i386/cdrom/rsync-2.6.9.tgz
===> Installing rsync-2.6.9 from /usr/ports/packages/i386/
all/rsync-2.6.9.tgz
rsync-2.6.9: complete
===> Returning to build of rsnapshot-1.2.9

http://www.openbsd.org/faq/faq15.html (16 of 26)4/29/2009 5:05:59 PM

15 - The OpenBSD packages and ports system

===> rsnapshot-1.2.9 depends on: rsync-2.6.9 - found
===> Extracting for rsnapshot-1.2.9
===> Patching for rsnapshot-1.2.9
===> Configuring for rsnapshot-1.2.9
 [...snip...]
===> Building for rsnapshot-1.2.9
 [...snip...]
===> Faking installation for rsnapshot-1.2.9
 [...snip...]
===> Building package for rsnapshot-1.2.9
Link to /usr/ports/packages/i386/ftp/rsnapshot-1.2.9.tgz
Link to /usr/ports/packages/i386/cdrom/rsnapshot-1.2.9.tgz
===> rsnapshot-1.2.9 depends on: rsync-2.6.9 - found
===> Installing rsnapshot-1.2.9 from /usr/ports/packages/
i386/all/rsnapshot-1.2.9.tgz
rsnapshot-1.2.9: complete

As you can see, the ports system is doing many things automatically. It will fetch, extract, and patch the
source code, configure and build (compile) the source, install the files into a fake directory, create a
package (corresponding to the packing list) and install this package onto your system (usually under /
usr/local/). And it does this recursively for all dependencies of the port. Just notice the "===>
Verifying install for ..." and "===> Returning to build of ..." lines in the
above output, indicating the walk through the dependency tree.

If a previous version of the application you want to install, was already installed on your system, you
can use make update instead of make install. This will call pkg_add(1) with the -r flag.

Note: Large applications will require a lot of system resources to build. Good examples are compilers
like GCC 4.0 or the Java 2 Software Development Kit. If you get "out of memory" type of errors when
building such a port, this usually has one of two causes:

● Your resource limits are too restrictive. Adjust them with ksh's ulimit or csh's limit command. If
that doesn't help, just become root before starting the build, or use sudo(8) with the -c flag to run
the build with the resources limited by the specified login class (refer to login.conf(5) for details
about login classes).

● You simply don't have enough RAM in your machine.

15.3.6 - Cleaning up after a build

You probably want to clean the port's default working directory after you have built the package and
installed it.

http://www.openbsd.org/faq/faq15.html (17 of 26)4/29/2009 5:05:59 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=sudo&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=login.conf&sektion=5

15 - The OpenBSD packages and ports system

$ make clean
===> Cleaning for rsnapshot-1.2.9

In addition, you can also clean the working directories of all dependencies of the port with this make
target:

$ make clean=depends
===> Cleaning for rsync-2.6.9
===> Cleaning for rsnapshot-1.2.9

If you wish to remove the source distribution set(s) of the port, you would use

$ make clean=dist
===> Cleaning for rsnapshot-1.2.9
===> Dist cleaning for rsnapshot-1.2.9

In case you have been compiling multiple flavors of the same port, you can clear the working directories
of all these flavors at once using

$ make clean=flavors

You can also clean things up as they get built, by setting a special variable. Work directories will
automatically be cleaned after packages have been created:

$ make package BULK=Yes

15.3.7 - Uninstalling a port's package

It is very easy to uninstall a port:

$ make uninstall
===> Deinstalling for rsnapshot-1.2.9
rsnapshot-1.2.9: complete
Clean shared items: complete

This will call pkg_delete(1) to have the corresponding package removed from your system. If desired,
you can also uninstall and re-install a port's package by using

$ make reinstall
===> Cleaning for rsnapshot-1.2.9
/usr/sbin/pkg_delete rsnapshot-1.2.9

http://www.openbsd.org/faq/faq15.html (18 of 26)4/29/2009 5:05:59 PM

15 - The OpenBSD packages and ports system

rsnapshot-1.2.9: complete
Clean shared items: complete
===> Installing rsnapshot-1.2.9 from /usr/ports/packages/
i386/all/rsnapshot-1.2.9.tgz
rsnapshot-1.2.9: complete

If you would like to get rid of the packages you just built, you can do so as follows:

$ make clean=packages
===> Cleaning for rsnapshot-1.2.9
rm -f /usr/ports/packages/i386/all/rsnapshot-1.2.9.tgz

15.3.8 - Using flavors and subpackages

Please do read the ports(7) manual page, which gives a good overview of this topic. There are two
mechanisms to control the packaging of software according to different needs.

The first mechanism is called flavors. A flavor usually indicates a certain set of compilation options. For
instance, some applications have a "no_x11" flavor which can be used on systems without X. Some
shells have a "static" flavor, which will build a statically linked version. There are ports which have
different flavors for building them with different graphical toolkits. Other examples include: support for
different database formats, different networking options (SSL, IPv6, ...), different paper sizes, etc.

Summary: Most likely you will use flavors when a package has not been made available for the flavor
you are looking for. In this case you will specify the desired flavor and build the port yourself.

Most port flavors have their own working directory during building and every flavor will be packaged
into a correspondingly named package to avoid any confusion. To see the different flavors of a certain
port, you would change to its subdirectory and issue

$ make show=FLAVORS

You should also look at the port's DESCR files, as they're supposed to explain the available flavors.

The second mechanism is called subpackages. A porter may decide to create subpackages for different
pieces of the same application, if they can be logically separated. You will often see subpackages for the
client part and the server part of a program. Sometimes extensive documentation is bundled in a separate
subpackage because it takes up quite some disk space. Extra functionality that pulls in heavy
dependencies will often be packaged separately. The porter will also decide which subpackage is the
main subpackage, to be installed as a default. Other examples are: extensive test suites which come with
the software, separate modules with support for different things, etc.

http://www.openbsd.org/faq/faq15.html (19 of 26)4/29/2009 5:05:59 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=ports&sektion=7

15 - The OpenBSD packages and ports system

Summary: Some ports are split into several packages. make install will only install the main
subpackage.

To list the different packages built by a port, use

$ make show=PACKAGES

make install will only install the main subpackage. To install them all, use

$ make install-all

To list the different subpackages available for a port, use

$ make show=MULTI_PACKAGES

It is possible to select which subpackage(s) to install from within the ports tree. After some tests, this
procedure will just call pkg_add(1) to install the desired subpackage(s).

$ env SUBPACKAGE="-server" make install

Note: The subpackages mechanism only handles packages, it does not modify any configuration options
before building the port. For that purpose you must use flavors.

15.4 - FAQ

15.4.1 - I'm getting all kinds of crazy errors. I just can't seem to get this ports
stuff working at all.

It is very likely that you are using a system and ports tree which are not in sync.

Sorry?

● Read EVERYTHING about OpenBSD's Flavors: -release, -stable, and -current. The short
summary is as follows, but please do read the document mentioned above to get an idea about
which one it is you want to use.

❍ Release: What is on the CD.
❍ Stable: Release, plus security and reliability enhancements.
❍ Current: The development version of OpenBSD.

● Do NOT check out a -current ports tree and expect it to work on a -release or -stable system. This
is one of the most common errors and you will irritate people when you ask for help about why

http://www.openbsd.org/faq/faq15.html (20 of 26)4/29/2009 5:05:59 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=pkg_add&sektion=1&manpath=OpenBSD+4.4
http://www.openbsd.org/orders.html
http://www.openbsd.org/stable.html
http://www.openbsd.org/faq/current.html

15 - The OpenBSD packages and ports system

"nothing seems to work!" If you follow -current, you need both a -current system and a -
current ports tree. Yes, this really does mean a wonderful new port will typically not work on
your "older" system -- even if that system was -current just a few weeks ago. Keep in mind that if
you use X11 as part of your system, it must also follow the corresponding branch!

● Because no intrusive changes are made in -stable, it is possible to use -release packages and ports
on a -stable system. There is no need to update all your installed packages after applying a few
errata patches to your system.

Another common failure is a missing X11 installation. Even if the port you try to build has no direct
dependency on X11, a subpackage of it or its dependencies may require X11 headers and libraries.
Building ports on systems without X11 is not supported, so if you insist on doing so, you are on your
own to figure it out. For many ports, there are, however, "no_x11" flavored packages available, which
you can install without needing X11 on your system.

In OpenBSD 4.2, many packages that use libexpat require xbase42.tgz to be installed, even if they have
no graphical functionality. This is fixed as of OpenBSD 4.3, where libexpat is included in the base43.tgz
file set. Thus, libexpat no longer depends on any X file sets. Read the additional notes about this
transition in the Upgrade Guide.

15.4.2 - The latest version of my Top-Favorite-Software is not available!

If you are using a release or stable version of OpenBSD, you will not find any package updates until the
next release, or until security issues occur which justify an update of the port in the -stable branch, and
of the corresponding package.

WARNING: DO NOT mix versions of Ports and OpenBSD!

Doing so will sooner or later (probably very soon, in fact) cause you headaches trying to solve all kinds
of errors!

But hey, I am all -current here!

The ports collection is a volunteer project. Sometimes the project simply doesn't have the developer
resources to keep everything up-to-date. Developers pretty much pick up what they consider interesting
and can test in their environment. Your donations can make a difference for testing ports on more
platforms.

Some individual ports may lag behind the mainstream versions because of this. The ports collection may
have a version back of a program from January while a new version of the program has been released by
its developers in May three months ago. Often this is a conscious decision; the new version may have
problems in it on OpenBSD that the maintainer is trying to solve, or that have simply made the

http://www.openbsd.org/faq/faq15.html (21 of 26)4/29/2009 5:05:59 PM

http://www.openbsd.org/faq/upgrade43.html#libexpat
http://www.openbsd.org/donations.html

15 - The OpenBSD packages and ports system

application worse than the old version: OpenBSD may have different goals than the mainstream
developers in other projects, which sometimes results in features and design or implementation choices
that are undesirable from OpenBSD developers' point of view. The update may also be postponed
because the new version is not considered a crucial update.

If you really need a new version of a port, you should ask the maintainer of the port to update the port
(see below on how to find out who the maintainer is). If you can help with this, all the better.

15.4.3 - Why is there no package for my Top-Favorite-Software?

There are several possible reasons for this:

● On the OpenBSD CD-ROMs, there is no space to include every possible package for every
possible platform. Therefore only the most used packages are included on the CDs. Additionally,
some software can only be redistributed for free, this means it cannot be included on the CDs. If
you cannot find a package on the CDs, try another source, such as an FTP mirror.

● Some software must simply not be redistributed in binary package form at all, according to its
license. Other software is encumbered by patents and can therefore not be redistributed. If your
Top-Favorite-Software falls into this category, you will need to use the port and compile from
source.

● Obvious, but sometimes forgotten: there is no port of your Top-Favorite-Software. You can
verify this by searching the ports tree. If there is indeed no port of your Top-Favorite-Software,
then you are welcome to help.

15.4.4 - Why is there no port of my Top-Favorite-Software?

The ports collection is a volunteer project. Active port development is done by a limited number of
people, in their spare time. These people usually make new ports only for software they use directly or
are interested in.

You can help. Consider creating your own port. There is some documentation available on this: Building
an OpenBSD Port. Read it, and read it again. Especially the part about maintaining your port. Then try
making a new port, and test it carefully and step by step. If finally it works OK for you, submit it to the
ports mailing list at ports@openbsd.org. Chances are good you will get some feedback and testing from
other people. If the testing is successful, your port will be considered to be taken up in the ports tree.

15.4.5 - Why is my Top-Favorite-Software not part of the base system?

Because OpenBSD is supposed to be a small stand-alone UNIX-like operating system, we need to draw
a line as to what to include. Generally, for an application to be included in the base system:

http://www.openbsd.org/faq/faq15.html (22 of 26)4/29/2009 5:05:59 PM

http://www.openbsd.org/goals.html
http://www.openbsd.org/orders.html
http://www.openbsd.org/porting.html
http://www.openbsd.org/porting.html
mailto:ports@openbsd.org

15 - The OpenBSD packages and ports system

● It must meet the high quality standards, laid out in the goals of the OpenBSD project.
● Its license must not be too restrictive and must be compatible with the BSD license.
● It must not be too large, in order to keep the size of the base system acceptable.

Further answers to this question are also found in FAQ 1.

15.4.6 - What should I use: packages or ports?

In general, you are highly advised to use packages over building an application from ports. The
OpenBSD ports team considers packages to be the goal of their porting work, not the ports themselves.

Building a complex application from source is not trivial. Not only must the application be compiled,
but the tools used to build it must be built as well. Unfortunately, OpenBSD, the tools, and the
application are all evolving, and often, getting all the pieces working together is a challenge. Once
everything works, a revision in any of the pieces the next day could render it broken. Every six months,
as a new release of OpenBSD is made, an effort is made to test the building of every port on every
platform, but during the development cycle it is likely that some ports will break.

In addition to having all the pieces work together, there is just the matter of time and resources required
to compile some applications from source. A common example is CVSup, a tool commonly used to
track the OpenBSD source tree. To install CVSup on a moderately fast system with a good Internet
connection may take only about ten seconds -- the time required to download and unpack a single 779kB
package file. In contrast, building CVSup on the same machine from source is a huge task, requiring
many tools and bootstrapping a compiler, taking almost half an hour on the same machine. Other
applications, such as Mozilla or KDE may take hours and huge amounts of disk space and RAM/swap to
build. Why go through this much time and effort, when the programs are already compiled and sitting on
your CD-ROM or FTP mirror, waiting to be used?

Of course, there are a few good reasons to use ports over packages in some cases:

● Distribution rules prohibit OpenBSD from distributing a package.
● You wish to modify or debug the application or study its source code.
● You need a flavor of a port that is not built by the OpenBSD ports team.
● You wish to alter the directory layout (i.e. modifying PREFIX or SYSCONFDIR).

However, for most people and most applications, using packages is a much easier, and definitely the
recommended way of adding applications to an OpenBSD system.

15.4.7 - How do I tweak these ports to have maximum performance?

http://www.openbsd.org/faq/faq15.html (23 of 26)4/29/2009 5:05:59 PM

http://www.openbsd.org/goals.html
http://www.cvsup.org/
http://www.openbsd.org/cvsup.html
http://www.mozilla.org/
http://www.kde.org/
http://www.openbsd.org/orders.html
http://www.openbsd.org/ftp.html

15 - The OpenBSD packages and ports system

OpenBSD is about stability and security. Just like the GENERIC kernel is the default and the only
supported kernel, the ports team makes sure the ports work and are stable. If you want to switch on all
kinds of compiler options, you are on your own. Please do not ask questions on the mailing lists such as
why it does not work, when you tried to switch on a few hidden knobs to make it work faster. In general,
all this tweaking is not necessary for more than 99% of users, and it is very likely to be a complete waste
of time, for you, the user, as well as for the developers who read about your "problems" when in reality
there are none.

15.4.8 I submitted a new port/an update weeks ago. Why isn't it committed?

The ports team has very limited resources and no committer was able to look at your port/update in time.
As frustrating as it may be, just ignore this fact. Take care of your port, send updates and eventually
someone might take care of it. It has happened before that people suddenly have some free time to spend
on committing ports or their interests shift to new areas and suddenly your old submission becomes
interesting, if it is remembered.

15.5 - Reporting problems

If you have trouble with an existing port, please send e-mail to the port maintainer. To see who is the
maintainer of the port, type, for example:

$ cd /usr/ports/archivers/unzip
$ make show=MAINTAINER

Alternatively, if there is no maintainer, or you can't reach him/her, send e-mail to the OpenBSD ports
mailing list, ports@openbsd.org. Please do NOT use the misc@openbsd.org mailing list for questions
about ports.

In any case please provide:

● Your OpenBSD version including any patches you may have applied. The kernel version is given
by: sysctl -n kern.version

● The version of your ports tree: if the file /usr/ports/CVS/Tag exists, provide its contents.
If this file is absent, you are using the -current ports tree.

● A complete description of the problem. Don't be afraid to provide details. Mention all the steps
you followed before the problem occurred. Is the problem reproducible? The more information
you provide, the more likely you will get help.

For ports which do not build correctly, a complete build transcript is almost always required. You can
use the portslogger script, found in /usr/ports/infrastructure/build, for this. A sample
run of portslogger might be:

http://www.openbsd.org/faq/faq15.html (24 of 26)4/29/2009 5:05:59 PM

mailto:ports@openbsd.org

15 - The OpenBSD packages and ports system

$ mkdir ~/portslogs
$ cd /usr/ports/archivers/unzip
$ make clean install 2>&1 | /usr/ports/infrastructure/build/
portslogger \
 ~/portslogs

After this, you should have a logfile of the build in your ~/portslogs directory that you can send to the
port maintainer. Also, make sure you are not using any special options in your build, for example in /
etc/mk.conf.

Alternatively, you can

● Use script(1) to create a complete build transcript. Do not remove the configure information.
● Attach the output of pkg_info(1) if it seems even remotely relevant.
● gcc(1) internal compiler errors ask you to report the bug to the gcc mailinglist. It does save time

if you follow their direction, and provide at least the various files produced by gcc -save-
temps.

15.6 - Helping us

There are many ways you can help. They are listed below, by increasing order of difficulty.

● Report problems as you experience them.
● You can systematically test ports and report breakages, or suggest improvements. Just have a

look at the Port Testing Guide.
● Test the updates to ports which are posted to the ports mailing list.
● Send updates or patches to a port's maintainer, or to the ports mailing list if the port has no

maintainer. Generally this is highly appreciated, unless your patches will cause developers to
waste time rather than save time.

● Create new ports. If you are really eager and want to know everything about porting applications
to OpenBSD, a good starting point is Building an OpenBSD Port.

Note: For all creation of new ports and subsequent testing, or for testing port updates, you must run a -
current system! In general, this is not a desirable environment because of its continuously evolving
nature, so proceed only if you are sure about committing yourself to following -current.

[FAQ Index] [To Section 14 - Disk Setup]

http://www.openbsd.org/faq/faq15.html (25 of 26)4/29/2009 5:05:59 PM

http://www.openbsd.org/cgi-bin/man.cgi?query=script&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=pkg_info&sektion=1&manpath=OpenBSD+4.4
http://www.openbsd.org/cgi-bin/man.cgi?query=gcc&sektion=1
http://www.openbsd.org/porttest.html
http://www.openbsd.org/porting.html

15 - The OpenBSD packages and ports system

 www@openbsd.org
$OpenBSD: faq15.html,v 1.54 2008/11/12 22:27:21 steven Exp $

http://www.openbsd.org/faq/faq15.html (26 of 26)4/29/2009 5:05:59 PM

mailto:www@openbsd.org

	openbsd.org
	OpenBSD Frequently Asked Questions
	1 - Introduction to OpenBSD
	2 - Getting to know OpenBSD
	3 - Getting started with OpenBSD
	4 - OpenBSD 4.4 Installation Guide
	5 - Building the System from Source
	6 - Networking
	7 - Keyboard and Display Controls
	8 - General Questions
	9 - Migrating to OpenBSD
	10 - System Management
	11 - The X Window System
	12 - Hardware and Platform-Specific Questions
	13 - Multimedia
	14 - Disk Setup
	15 - The OpenBSD packages and ports system

	OFHBEABLMEJGDNLNFNPGCHKJEKAJAFJH:
	form1:
	x:
	f1:
	f2: www.openbsd.org
	f3: www.openbsd.org/faq

	f4: FAQ Search
	f5:

