
PF: The OpenBSD Packet Filter

Language: en [teams]

de fr nl pl pt

[up to FAQ] [Next: Getting Started]

PF: The OpenBSD Packet Filter

Table of Contents

● Basic Configuration
❍ Getting Started

❍ Lists and Macros

❍ Tables

❍ Packet Filtering

❍ Network Address Translation

❍ Traffic Redirection (Port Forwarding)

❍ Shortcuts For Creating Rulesets

● Advanced Configuration
❍ Runtime Options

❍ Scrub (Packet Normalization)

❍ Anchors

❍ Packet Queueing and Prioritization

❍ Address Pools and Load Balancing

❍ Packet Tagging (Policy Filtering)

● Additional Topics
❍ Logging

❍ Performance

❍ Issues with FTP

❍ Authpf: User Shell for Authenticating Gateways

❍ Firewall Redundancy with CARP and pfsync

● Example Rulesets
❍ Firewall for Home or Small Office

Packet Filter (from here on referred to as PF) is OpenBSD's system for filtering TCP/IP traffic and doing Network Address
Translation. PF is also capable of normalizing and conditioning TCP/IP traffic and providing bandwidth control and packet
prioritization. PF has been a part of the GENERIC OpenBSD kernel since OpenBSD 3.0. Previous OpenBSD releases used a
different firewall/NAT package which is no longer supported.

PF was originally developed by Daniel Hartmeier and is now maintained and developed by Daniel and the rest of the OpenBSD
team.

http://www.openbsd.org/faq/pf/index.html (1 of 2) [31/10/2005 10:45:08]

http://www.openbsd.org/index.html
http://www.openbsd.org/translation.html
http://www.openbsd.org/faq/pf/de/index.html
http://www.openbsd.org/faq/pf/fr/index.html
http://www.openbsd.org/faq/pf/nl/index.html
http://www.openbsd.org/faq/pf/pl/index.html
http://www.openbsd.org/faq/pf/pt/index.html
http://www.openbsd.org/faq/index.html

PF: The OpenBSD Packet Filter

This set of documents, also available in PDF format, is intended as a general introduction to the PF system as run on OpenBSD.

Even if it covers all of PF's major features, it is only intended to be used as a supplement to the man pages, and not as a

replacement for them.

For a complete and in-depth view of what PF can do, please start by reading the pf(4) man page.

As with the rest of the FAQ, this set of documents is focused on users of OpenBSD 3.7. As PF is always growing and developing,

there are changes and enhancements between the 3.7-release version and the version in OpenBSD-current. The reader is advised to
see the man pages for the version of OpenBSD they are currently working with.

[up to FAQ] [Next: Getting Started]

 www@openbsd.org

$OpenBSD: index.html,v 1.28 2005/10/02 20:15:05 saad Exp $

http://www.openbsd.org/faq/pf/index.html (2 of 2) [31/10/2005 10:45:08]

ftp://ftp.openbsd.org/pub/OpenBSD/doc/pf-faq.pdf
http://www.openbsd.org/cgi-bin/man.cgi
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/37.html
http://www.openbsd.org/faq/index.html
http://www.openbsd.org/faq/index.html
mailto:www@openbsd.org

PF: Getting Started

[Contents] [Next: Lists and Macros]

PF: Getting Started

Table of Contents

● Activation

● Configuration

● Control

Activation

To activate PF and have it read its configuration file at boot, add the line

pf=YES

to the file /etc/rc.conf.local.

Reboot your system to have it take effect.

You can also activate and deactivate PF by using the pfctl(8) program:

pfctl -e
pfctl -d

to enable and disable, respectively. Note that this just enables or disables PF, it doesn't actually load a ruleset. The ruleset must be
loaded separately, either before or after PF is enabled.

Configuration

PF reads its configuration rules from /etc/pf.conf at boot time, as loaded by the rc scripts. Note that while /etc/pf.conf

is the default and is loaded by the system rc scripts, it is just a text file loaded and interpreted by pfctl(8) and inserted into pf(4).

For some applications, other rulesets may be loaded from other files after boot. As with any well designed Unix application, PF
offers great flexibility.

The pf.conf file has seven parts:

http://www.openbsd.org/faq/pf/config.html (1 of 2) [31/10/2005 10:45:10]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=rc.conf.local&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=rc&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&manpath=OpenBSD+3.7

PF: Getting Started

● Macros: User-defined variables that can hold IP addresses, interface names, etc.

● Tables: A structure used to hold lists of IP addresses.

● Options: Various options to control how PF works.

● Scrub: Reprocessing packets to normalize and defragment them.

● Queueing: Provides bandwidth control and packet prioritization.

● Translation: Controls Network Address Translation and packet redirection.

● Filter Rules: Allows the selective filtering or blocking of packets as they pass through any of the interfaces.

With the exception of macros and tables, each section should appear in this order in the configuration file, though not all sections
have to exist for any particular application.

Blank lines are ignored, and lines beginning with # are treated as comments.

Control

After boot, PF operation can be managed using the pfctl(8) program. Some example commands are:

 # pfctl -f /etc/pf.conf loads the pf.conf file
 # pfctl -nf /etc/pf.conf parse the file, but don't load it
 # pfctl -Nf /etc/pf.conf Load only the NAT rules from the file
 # pfctl -Rf /etc/pf.conf Load only the filter rules from the file

 # pfctl -sn Show the current NAT rules
 # pfctl -sr Show the current filter rules
 # pfctl -ss Show the current state table
 # pfctl -si Show filter stats and counters
 # pfctl -sa Show EVERYTHING it can show

For a complete list of commands, please see the pfctl(8) man page.

[Contents] [Next: Lists and Macros]

 www@openbsd.org

$OpenBSD: config.html,v 1.17 2005/05/20 00:12:02 joel Exp $

http://www.openbsd.org/faq/pf/config.html (2 of 2) [31/10/2005 10:45:10]

http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+3.7
mailto:www@openbsd.org

PF: Lists and Macros

[Previous: Getting Started] [Contents] [Next: Tables]

PF: Lists and Macros

Table of Contents

● Lists

● Macros

Lists

A list allows the specification of multiple similar criteria within a rule. For example, multiple protocols, port numbers, addresses,
etc. So, instead of writing one filter rule for each IP address that needs to be blocked, one rule can be written by specifying the IP
addresses in a list. Lists are defined by specifying items within { } brackets.

When pfctl(8) encounters a list during loading of the ruleset, it creates multiple rules, one for each item in the list. For example:

block out on fxp0 from { 192.168.0.1, 10.5.32.6 } to any

gets expanded to:

block out on fxp0 from 192.168.0.1 to any
block out on fxp0 from 10.5.32.6 to any

Multiple lists can be specified within a rule and are not limited to just filter rules:

rdr on fxp0 proto tcp from any to any port { 22 80 } -> \
 192.168.0.6
block out on fxp0 proto { tcp udp } from { 192.168.0.1, \
 10.5.32.6 } to any port { ssh telnet }

Note that the commas between list items are optional.

Beware of constructs like the following, dubbed "negated lists", which are a common mistake:

pass in on fxp0 from { 10.0.0.0/8, !10.1.2.3 }

While the intended meaning is usually to match "any address within 10.0.0.0/8, except for 10.1.2.3", the rule expands to:

http://www.openbsd.org/faq/pf/macros.html (1 of 2) [31/10/2005 10:45:12]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+3.7

PF: Lists and Macros

pass in on fxp0 from 10.0.0.0/8
pass in on fxp0 from !10.1.2.3

which matches any possible address. Instead, a table should be used.

Macros

Macros are user-defined variables that can hold IP addresses, port numbers, interface names, etc. Macros can reduce the
complexity of a PF ruleset and also make maintaining a ruleset much easier.

Macro names must start with a letter and may contain letters, digits, and underscores. Macro names cannot be reserved words such
as pass, out, or queue.

ext_if = "fxp0"

block in on $ext_if from any to any

This creates a macro named ext_if. When a macro is referred to after it's been created, its name is preceded with a $ character.

Macros can also expand to lists, such as:

friends = "{ 192.168.1.1, 10.0.2.5, 192.168.43.53 }"

Macros can be defined recursively. Since macros are not expanded within quotes the following syntax must be used:

host1 = "192.168.1.1"
host2 = "192.168.1.2"
all_hosts = "{" $host1 $host2 "}"

The macro $all_hosts now expands to 192.168.1.1, 192.168.1.2.

[Previous: Getting Started] [Contents] [Next: Tables]

 www@openbsd.org

$OpenBSD: macros.html,v 1.16 2005/05/20 00:12:02 joel Exp $

http://www.openbsd.org/faq/pf/macros.html (2 of 2) [31/10/2005 10:45:12]

mailto:www@openbsd.org

PF: Tables

[Previous: Lists and Macros] [Contents] [Next: Packet Filtering]

PF: Tables

Table of Contents

● Introduction

● Configuration

● Manipulating with pfctl

● Specifying Addresses

● Address Matching

Introduction

A table is used to hold a group of IPv4 and/or IPv6 addresses. Lookups against a table are very fast and consume less memory and
processor time than lists. For this reason, a table is ideal for holding a large group of addresses as the lookup time on a table

holding 50,000 addresses is only slightly more than for one holding 50 addresses. Tables can be used in the following ways:

● source and/or destination address in filter, scrub, NAT, and redirection rules.

● translation address in NAT rules.

● redirection address in redirection rules.

● destination address in route-to, reply-to, and dup-to filter rule options.

Tables are created either in pf.conf or by using pfctl(8).

Configuration

In pf.conf, tables are created using the table directive. The following attributes may be specified for each table:

● const - the contents of the table cannot be changed once the table is created. When this attribute is not specified,
pfctl(8) may be used to add or remove addresses from the table at any time, even when running with a securelevel(7) of

two or greater.
● persist - causes the kernel to keep the table in memory even when no rules refer to it. Without this attribute, the

kernel will automatically remove the table when the last rule referencing it is flushed.

Example:

table <goodguys> { 192.0.2.0/24 }

http://www.openbsd.org/faq/pf/tables.html (1 of 3) [31/10/2005 10:45:14]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=securelevel&sektion=7&manpath=OpenBSD+3.7

PF: Tables

table <rfc1918> const { 192.168.0.0/16, 172.16.0.0/12, \
 10.0.0.0/8 }
table <spammers> persist

block in on fxp0 from { <rfc1918>, <spammers> } to any
pass in on fxp0 from <goodguys> to any

Addresses can also be specified using the negation (or "not") modifier such as:

table <goodguys> { 192.0.2.0/24, !192.0.2.5 }

The goodguys table will now match all addresses in the 192.0.2.0/24 network except for 192.0.2.5.

Note that table names are always enclosed in < >.

Tables can also be populated from text files containing a list of IP addresses and networks:

table <spammers> persist file "/etc/spammers"

block in on fxp0 from <spammers> to any

The file /etc/spammers would contain a list of IP addresses and/or CIDR network blocks, one per line. Any line beginning

with # is treated as a comment and ignored.

Manipulating with pfctl

Tables can be manipulated on the fly by using pfctl(8). For instance, to add entries to the <spammers> table created above:

pfctl -t spammers -T add 218.70.0.0/16

This will also create the <spammers> table if it doesn't already exist. To list the addresses in a table:

pfctl -t spammers -T show

The -v argument can also be used with -Tshow to display statistics for each table entry. To remove addresses from a table:

pfctl -t spammers -T delete 218.70.0.0/16

For more information on manipulating tables with pfctl, please see pfctl(8).

Specifying Addresses

In addition to being specified by IP address, hosts may also be specified by their hostname. When the hostname is resolved to an IP
address, all resulting IPv4 and IPv6 addresses are placed into the table. IP addresses can also be entered into a table by specifying a
valid interface name or the self keyword. The table will then contain all IP addresses assigned to that interface or to the machine
(including loopback addresses), respectively.

One limitation when specifying addresses is that 0.0.0.0/0 and 0/0 will not work in tables. The alternative is to hard code that
address or use a macro.

http://www.openbsd.org/faq/pf/tables.html (2 of 3) [31/10/2005 10:45:14]

http://public.pacbell.net/dedicated/cidr.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+3.7

PF: Tables

Address Matching

An address lookup against a table will return the most narrowly matching entry. This allows for the creation of tables such as:

table <goodguys> { 172.16.0.0/16, !172.16.1.0/24, 172.16.1.100 }

block in on dc0 all
pass in on dc0 from <goodguys> to any

Any packet coming in through dc0 will have its source address matched against the table <goodguys>:

● 172.16.50.5 - narrowest match is 172.16.0.0/16; packet matches the table and will be passed
● 172.16.1.25 - narrowest match is !172.16.1.0/24; packet matches an entry in the table but that entry is negated (uses the

"!" modifier); packet does not match the table and will be blocked
● 172.16.1.100 - exactly matches 172.16.1.100; packet matches the table and will be passed
● 10.1.4.55 - does not match the table and will be blocked

[Previous: Lists and Macros] [Contents] [Next: Packet Filtering]

 www@openbsd.org

$OpenBSD: tables.html,v 1.15 2005/05/20 00:12:02 joel Exp $

http://www.openbsd.org/faq/pf/tables.html (3 of 3) [31/10/2005 10:45:14]

mailto:www@openbsd.org

PF: Packet Filtering

[Previous: Tables] [Contents] [Next: Network Address Translation]

PF: Packet Filtering

Table of Contents

● Introduction

● Rule Syntax

● Default Deny

● Passing Traffic

● The quick Keyword

● Keeping State

● Keeping State for UDP

● Stateful Tracking Options

● TCP Flags

● TCP SYN Proxy

● Blocking Spoofed Packets

● Passive Operating System Fingerprinting

● IP Options

● Filtering Ruleset Example

Introduction

Packet filtering is the selective passing or blocking of data packets as they pass through a network interface. The criteria that pf(4) uses when inspecting packets

are based on the Layer 3 (IPv4 and IPv6) and Layer 4 (TCP, UDP, ICMP, and ICMPv6) headers. The most often used criteria are source and destination address,

source and destination port, and protocol.

Filter rules specify the criteria that a packet must match and the resulting action, either block or pass, that is taken when a match is found. Filter rules are
evaluated in sequential order, first to last. Unless the packet matches a rule containing the quick keyword, the packet will be evaluated against all filter rules
before the final action is taken. The last rule to match is the "winner" and will dictate what action to take on the packet. There is an implicit pass all at the
beginning of a filtering ruleset meaning that if a packet does not match any filter rule the resulting action will be pass.

Rule Syntax

The general, highly simplified syntax for filter rules is:

action [direction] [log] [quick] [on interface] [af] [proto protocol] \
 [from src_addr [port src_port]] [to dst_addr [port dst_port]] \
 [flags tcp_flags] [state]

action
The action to be taken for matching packets, either pass or block. The pass action will pass the packet back to the kernel for further processing
while the block action will react based on the setting of the block-policy option. The default reaction may be overridden by specifying either

block drop or block return.
direction

The direction the packet is moving on an interface, either in or out.
log

Specifies that the packet should be logged via pflogd(8). If the rule specifies the keep state, modulate state, or synproxy state option,

then only the packet which establishes the state is logged. To log all packets regardless, use log-all.
quick

If a packet matches a rule specifying quick, then that rule is considered the last matching rule and the specified action is taken.

http://www.openbsd.org/faq/pf/filter.html (1 of 9) [31/10/2005 10:45:16]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=ip&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=ip6&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=tcp&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=udp&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=icmp&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=icmp6&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=pflogd&sektion=8&manpath=OpenBSD+3.7

PF: Packet Filtering

interface
The name or group of the network interface that the packet is moving through. An interface group is specified as the name of the interface but without
the integer appended. For example: ppp or fxp. This would cause the rule to match for any packet traversing any ppp or fxp interface, respectively.

af
The address family of the packet, either inet for IPv4 or inet6 for IPv6. PF is usually able to determine this parameter based on the source and/or
destination address(es).

protocol
The Layer 4 protocol of the packet:

❍ tcp
❍ udp
❍ icmp
❍ icmp6
❍ A valid protocol name from /etc/protocols

❍ A protocol number between 0 and 255
❍ A set of protocols using a list.

src_addr, dst_addr
The source/destination address in the IP header. Addresses can be specified as:

❍ A single IPv4 or IPv6 address.
❍ A CIDR network block.

❍ A fully qualified domain name that will be resolved via DNS when the ruleset is loaded. All resulting IP addresses will be substituted into the
rule.

❍ The name of a network interface. Any IP addresses assigned to the interface will be substituted into the rule.
❍ The name of a network interface followed by /netmask (i.e., /24). Each IP address on the interface is combined with the netmask to form

a CIDR network block which is substituted into the rule.
❍ The name of a network interface in parentheses (). This tells PF to update the rule if the IP address(es) on the named interface change. This

is useful on an interface that gets its IP address via DHCP or dial-up as the ruleset doesn't have to be reloaded each time the address changes.
❍ The name of a network interface followed by any one of these modifiers:

■ :network - substitues the CIDR network block (e.g., 192.168.0.0/24)
■ :broadcast - substitutes the network broadcast address (e.g., 192.168.0.255)
■ :peer - substitues the peer's IP address on a point-to-point link

In addition, the :0 modifier can be appended to either an interface name or to any of the above modifiers to indicate that PF should
not include aliased IP addresses in the substituion. These modifiers can also be used when the interface is contained in parentheses.
Example: fxp0:network:0

❍ A table.

❍ Any of the above but negated using the ! ("not") modifier.
❍ A set of addresses using a list.

❍ The keyword any meaning all addresses
❍ The keyword all which is short for from any to any.

src_port, dst_port
The source/destination port in the Layer 4 packet header. Ports can be specified as:

❍ A number between 1 and 65535
❍ A valid service name from /etc/services

❍ A set of ports using a list

❍ A range:
■ != (not equal)
■ < (less than)
■ > (greater than)
■ <= (less than or equal)
■ >= (greater than or equal)
■ >< (range)
■ <> (inverse range)

The last two are binary operators (they take two arguments) and do not include the arguments in the range.
■ : (inclusive range)

The inclusive range operator is also a binary operator and does include the arguments in the range.
tcp_flags

Specifies the flags that must be set in the TCP header when using proto tcp. Flags are specified as flags check/mask. For example: flags
S/SA - this instructs PF to only look at the S and A (SYN and ACK) flags and to match if only the SYN flag is "on".

state
Specifies whether state information is kept on packets matching this rule.

❍ keep state - works with TCP, UDP, and ICMP.
❍ modulate state - works only with TCP. PF will generate strong Initial Sequence Numbers (ISNs) for packets matching this rule.
❍ synproxy state - proxies incoming TCP connections to help protect servers from spoofed TCP SYN floods. This option includes the

functionality of keep state and modulate state.

Default Deny

The recommended practice when setting up a firewall is to take a "default deny" approach. That is, to deny everything and then selectively allow certain traffic
through the firewall. This approach is recommended because it errs on the side of caution and also makes writing a ruleset easier.

http://www.openbsd.org/faq/pf/filter.html (2 of 9) [31/10/2005 10:45:16]

http://www.openbsd.org/cgi-bin/man.cgi?query=protocols&sektion=5&manpath=OpenBSD+3.7
http://public.pacbell.net/dedicated/cidr.html
http://www.openbsd.org/cgi-bin/man.cgi?query=services&sektion=5&manpath=OpenBSD+3.7

PF: Packet Filtering

To create a default deny filter policy, the first two filter rules should be:

block in all
block out all

This will block all traffic on all interfaces in either direction from anywhere to anywhere.

Passing Traffic

Traffic must now be explicitly passed through the firewall or it will be dropped by the default deny policy. This is where packet criteria such as source/destination
port, source/destination address, and protocol come into play. Whenever traffic is permitted to pass through the firewall the rule(s) should be written to be as
restrictive as possible. This is to ensure that the intended traffic, and only the intended traffic, is permitted to pass.

Some examples:

Pass traffic in on dc0 from the local network, 192.168.0.0/24,
to the OpenBSD machine's IP address 192.168.0.1. Also, pass the
return traffic out on dc0.
pass in on dc0 from 192.168.0.0/24 to 192.168.0.1
pass out on dc0 from 192.168.0.1 to 192.168.0.0/24

Pass TCP traffic in on fxp0 to the web server running on the
OpenBSD machine. The interface name, fxp0, is used as the
destination address so that packets will only match this rule if
they're destined for the OpenBSD machine.
pass in on fxp0 proto tcp from any to fxp0 port www

The quick Keyword

As indicated earlier, each packet is evaluated against the filter ruleset from top to bottom. By default, the packet is marked for passage, which can be changed by
any rule, and could be changed back and forth several times before the end of the filter rules. The last matching rule "wins". There is an exception to this: The
quick option on a filtering rule has the effect of canceling any further rule processing and causes the specified action to be taken. Let's look at a couple
examples:

Wrong:

block in on fxp0 proto tcp from any to any port ssh
pass in all

In this case, the block line may be evaluated, but will never have any effect, as it is then followed by a line which will pass everything.

Better:

block in quick on fxp0 proto tcp from any to any port ssh
pass in all

These rules are evaluated a little differently. If the block line is matched, due to the quick option, the packet will be blocked, and the rest of the ruleset will be
ignored.

Keeping State

One of Packet Filter's important abilities is "keeping state" or "stateful inspection". Stateful inspection refers to PF's ability to track the state, or progress, of a
network connection. By storing information about each connection in a state table, PF is able to quickly determine if a packet passing through the firewall belongs
to an already established connection. If it does, it is passed through the firewall without going through ruleset evaluation.

Keeping state has many advantages including simpler rulesets and better packet filtering performance. PF is able to match packets moving in either direction to
state table entries meaning that filter rules which pass returning traffic don't need to be written. And, since packets matching stateful connections don't go through
ruleset evaluation, the time PF spends processing those packets can be greatly lessened.

When a rule has the keep state option, the first packet matching the rule creates a "state" between the sender and receiver. Now, not only do packets going

http://www.openbsd.org/faq/pf/filter.html (3 of 9) [31/10/2005 10:45:16]

PF: Packet Filtering

from the sender to receiver match the state entry and bypass ruleset evaluation, but so do the reply packets from receiver to sender. For example:

pass out on fxp0 proto tcp from any to any keep state

This allows any outbound TCP traffic on the fxp0 interface and also permits the reply traffic to pass back through the firewall. While keeping state is a nice
feature, its use significantly improves the performance of your firewall as state lookups are dramatically faster than running a packet through the filter rules.

The modulate state option works just like keep state except that it only applies to TCP packets. With modulate state, the Initial Sequence
Number (ISN) of outgoing connections is randomized. This is useful for protecting connections initiated by certain operating systems that do a poor job of
choosing ISNs. Starting with OpenBSD 3.5, the modulate state option can be used in rules that specify protocols other than TCP.

Keep state on outgoing TCP, UDP, and ICMP packets and modulate TCP ISNs:

pass out on fxp0 proto { tcp, udp, icmp } from any \
 to any modulate state

Another advantage of keeping state is that corresponding ICMP traffic will be passed through the firewall. For example, if keep state is specified for a TCP
connection and an ICMP source-quench message referring to this TCP connection arrives, it will be matched to the appropriate state entry and passed through the
firewall.

The scope of a state entry is controlled globally by the state-policy runtime option and on a per rule basis by the if-bound, group-bound, and

floating state option keywords. These per rule keywords have the same meaning as when used with the state-policy option. Example:

pass out on fxp0 proto { tcp, udp, icmp } from any \
 to any modulate state (if-bound)

This rule would dictate that in order for packets to match the state entry, they must be transitting the fxp0 interface.

Note that nat, binat, and rdr rules implicitly create state for matching connections as long as the connection is passed by the filter ruleset.

Keeping State for UDP

One will sometimes hear it said that, "One can not create state with UDP as UDP is a stateless protocol!" While it is true that a UDP communication session does
not have any concept of state (an explicit start and stop of communications), this does not have any impact on PF's ability to create state for a UDP session. In the
case of protocols without "start" and "end" packets, PF simply keeps track of how long it has been since a matching packet has gone through. If the timeout is
reached, the state is cleared. The timeout values can be set in the options section of the pf.conf file.

Stateful Tracking Options

When a filter rule creates a state table entry through the use of any of the keep state, modulate state, or synproxy state keywords, certain options
can be specified that control the behavior of state creation. The following options are available:

max number
Limit the maximum number of state entries the rule can create to number. If the maximum is reached, packets that would normally create state are
dropped until the number of existing states decreases.

source-track
This option enables the tracking of number of states created per source IP address. This option has two formats:

❍ source-track rule - The maximum number of states created by this rule is limited by the rule's max-src-nodes and max-src-
states options. Only state entries created by this particular rule count toward the rule's limits.

❍ source-track global - The number of states created by all rules that use this option is limited. Each rule can specify different max-
src-nodes and max-src-states options, however state entries created by any participating rule count towards each individual rule's
limits.

The total number of source IP addresses tracked globally can be controlled via the src-nodes runtime option.

max-src-nodes number
When the source-track option is used, max-src-nodes will limit the number of source IP addresses that can simultaneously create state. This
option can only be used with source-track rule.

max-src-states number
When the source-track option is used, max-src-states will limit the number of simultaneous state entries that can be created per source IP
address. The scope of this limit (i.e., states created by this rule only or states created by all rules that use source-track) is dependent on the
source-track option specified.

http://www.openbsd.org/faq/pf/filter.html (4 of 9) [31/10/2005 10:45:16]

PF: Packet Filtering

An example rule:

pass in on $ext_if proto tcp to $web_server \
 port www flags S/SA keep state \
 (max 200, source-track rule, max-src-nodes 100, max-src-states 3)

The rule above defines the following behavior:

● Limit the absolute maximum number of states that this rule can create to 200
● Enable source tracking; limit state creation based on states created by this rule only
● Limit the maximum number of nodes that can simultaneously create state to 100
● Limit the maximum number of simultaneous states per source IP to 3

A separate set of restrictions can be placed on stateful TCP connections that have completed the 3-way handshake.

max-src-conn number
Limit the maximum number of simultaneous TCP connections which have completed the 3-way handshake that a single host can make.

max-src-conn-rate number / interval
Limit the rate of new connections to a certain amount per time interval.

Both of these options automatically invoke the source-track rule option and are incompatible with source-track global.

Since these limits are only being placed on TCP connections that have completed the 3-way handshake, more aggresive actions can be taken on offending IP
addresses.

overload <table>
Put an offending host's IP address into the named table.

flush [global]
Kill any other states that match this rule and that were created by this source IP. When global is specified, kill all states matching this source IP,
regardless of which rule created the state.

An example:

table <abusive_hosts> persist
block in quick from <abusive_hosts>

pass in on $ext_if proto tcp to $web_server \
 port www flags S/SA keep state \
 (max-src-conn 100, max-src-conn-rate 15/5, overload <abusive_hosts> flush)

This does the following:

● Limits the maximum number of connections per source to 100
● Rate limits the number of connections to 15 in a 5 second span
● Puts the IP address of any host that breaks these limits into the <abusive_hosts> table
● For any offending IP addresses, flush any states created by this rule.

TCP Flags

Matching TCP packets based on flags is most often used to filter TCP packets that are attempting to open a new connection. The TCP flags and their meanings
are listed here:

● F : FIN - Finish; end of session
● S : SYN - Synchronize; indicates request to start session
● R : RST - Reset; drop a connection
● P : PUSH - Push; packet is sent immediately
● A : ACK - Acknowledgement
● U : URG - Urgent
● E : ECE - Explicit Congestion Notification Echo
● W : CWR - Congestion Window Reduced

To have PF inspect the TCP flags during evaluation of a rule, the flags keyword is used with the following syntax:

http://www.openbsd.org/faq/pf/filter.html (5 of 9) [31/10/2005 10:45:16]

PF: Packet Filtering

flags check/mask

The mask part tells PF to only inspect the specified flags and the check part specifies which flag(s) must be "on" in the header for a match to occur.

pass in on fxp0 proto tcp from any to any port ssh flags S/SA

The above rule passes TCP traffic with the SYN flag set while only looking at the SYN and ACK flags. A packet with the SYN and ECE flags would match the
above rule while a packet with SYN and ACK or just ACK would not.

Note: in previous versions of OpenBSD, the following syntax was supported:

. . . flags S

This is no longer true. A mask must now always be specified.

Flags are often used in conjunction with keep state rules to help control the creation of state entries:

pass out on fxp0 proto tcp all flags S/SA keep state

This would permit the creation of state on any outgoing TCP packet with the SYN flag set out of the SYN and ACK flags.

One should be careful with using flags -- understand what you are doing and why, and be careful with the advice people give as a lot of it is bad. Some people
have suggested creating state "only if the SYN flag is set and no others". Such a rule would end with:

 . . . flags S/FSRPAUEW bad idea!!

The theory is, create state only on the start of the TCP session, and the session should start with a SYN flag, and no others. The problem is some sites are starting
to use the ECN flag and any site using ECN that tries to connect to you would be rejected by such a rule. A much better guideline is:

. . . flags S/SAFR

While this is practical and safe, it is also unnecessary to check the FIN and RST flags if traffic is also being scrubbed. The scrubbing process will cause PF to

drop any incoming packets with illegal TCP flag combinations (such as SYN and RST) and to normalize potentially ambigious combinations (such as SYN and
FIN). It's highly recommended to always scrub incoming traffic:

scrub in on fxp0
.
.
.
pass in on fxp0 proto tcp from any to any port ssh flags S/SA \
 keep state

TCP SYN Proxy

Normally when a client initiates a TCP connection to a server PF will pass the handshake packets between the two endpoints as they arrive. PF has the ability,

however, to proxy the handshake. With the handshake proxied, PF itself will complete the handshake with the client, initiate a handshake with the server, and
then pass packets between the two. The benefit of this process is that no packets are sent to the server before the client completes the handshake. This eliminates
the threat of spoofed TCP SYN floods affecting the server because a spoofed client connection will be unable to complete the handshake.

The TCP SYN proxy is enabled using the synproxy state keywords in filter rules. Example:

pass in on $ext_if proto tcp from any to $web_server port www \
 flags S/SA synproxy state

Here, connections to the web server will be TCP proxied by PF.

Because of the way synproxy state works, it also includes the same functionality as keep state and modulate state.

The SYN proxy will not work if PF is running on a bridge(4).

http://www.openbsd.org/faq/pf/filter.html (6 of 9) [31/10/2005 10:45:16]

http://www.inetdaemon.com/tutorials/internet/tcp/connections.html
http://www.openbsd.org/cgi-bin/man.cgi?query=bridge&sektion=4&manpath=OpenBSD+3.7

PF: Packet Filtering

Blocking Spoofed Packets

Address "spoofing" is when an malicious user fakes the source IP address in packets they transmit in order to either hide their real address or to impersonate
another node on the network. Once the user has spoofed their address they can launch a network attack without revealing the true source of the attack or attempt
to gain access to network services that are restricted to certain IP addresses.

PF offers some protection against address spoofing through the antispoof keyword:

antispoof [log] [quick] for interface [af]

log
Specifies that matching packets should be logged via pflogd(8).

quick
If a packet matches this rule then it will be considered the "winning" rule and ruleset evaluation will stop.

interface
The network interface to activate spoofing protection on. This can also be a list of interfaces.

af
The address family to activate spoofing protection for, either inet for IPv4 or inet6 for IPv6.

Example:

antispoof for fxp0 inet

When a ruleset is loaded, any occurrences of the antispoof keyword are expanded into two filter rules. Assuming that interface fxp0 has IP address 10.0.0.1
and a subnet mask of 255.255.255.0 (i.e., a /24), the above antispoof rule would expand to:

block in on ! fxp0 inet from 10.0.0.0/24 to any
block in inet from 10.0.0.1 to any

These rules accomplish two things:

● Blocks all traffic coming from the 10.0.0.0/24 network that does not pass in through fxp0. Since the 10.0.0.0/24 network is on the fxp0 interface,
packets with a source address in that network block should never be seen coming in on any other interface.

● Blocks all incoming traffic from 10.0.0.1, the IP address on fxp0. The host machine should never send packets to itself through an external interface,
so any incoming packets with a source address belonging to the machine can be considered malicious.

NOTE: The filter rules that the antispoof rule expands to will also block packets sent over the loopback interface to local addresses. These addresses should
be passed explicitly. Example:

pass quick on lo0 all

antispoof for fxp0 inet

Usage of antispoof should be restricted to interfaces that have been assigned an IP address. Using antispoof on an interface without an IP address will
result in filter rules such as:

block drop in on ! fxp0 inet all
block drop in inet all

With these rules there is a risk of blocking all inbound traffic on all interfaces.

Passive Operating System Fingerprinting

Passive OS Fingerprinting (OSFP) is a method for passively detecting the operating system of a remote host based on certain characteristics within that host's
TCP SYN packets. This information can then be used as criteria within filter rules.

PF determines the remote operating system by comparing characteristics of a TCP SYN packet against the fingerprints file, which by default is /etc/pf.os.

Once PF is enabled, the current fingerprint list can be viewed with this command:

http://www.openbsd.org/faq/pf/filter.html (7 of 9) [31/10/2005 10:45:16]

http://www.openbsd.org/cgi-bin/man.cgi?query=pflogd&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.os&sektion=5&manpath=OpenBSD+3.7

PF: Packet Filtering

pfctl -s osfp

Within a filter rule, a fingerprint may be specified by OS class, version, or subtype/patch level. Each of these items is listed in the output of the pfctl command
shown above. To specify a fingerprint in a filter rule, the os keyword is used:

pass in on $ext_if from any os OpenBSD keep state
block in on $ext_if from any os "Windows 2000"
block in on $ext_if from any os "Linux 2.4 ts"
block in on $ext_if from any os unknown

The special operating system class unknown allows for matching packets when the OS fingerprint is not known.

TAKE NOTE of the following:

● Operating system fingerprints are occasionally wrong due to spoofed and/or crafted packets that are made to look like they originated from a specific
operating system.

● Certain revisions or patchlevels of an operating system may change the stack's behavior and cause it to either not match what's in the fingerprints file or
to match another entry altogether.

● OSFP only works on the TCP SYN packet; it will not work on other protocols or on already established connections.

IP Options

By default, PF blocks packets with IP options set. This can make the job more difficult for "OS fingerprinting" utilities like nmap. If you have an application that
requires the passing of these packets, such as multicast or IGMP, you can use the allow-opts directive:

pass in quick on fxp0 all allow-opts

Filtering Ruleset Example

Below is an example of a filtering ruleset. The machine running PF is acting as a firewall between a small, internal network and the Internet. Only the filter rules
are shown; queueing, nat, rdr, etc., have been left out of this example.

ext_if = "fxp0"
int_if = "dc0"
lan_net = "192.168.0.0/24"

table containing all IP addresses assigned to the firewall
table <firewall> const { self }

scrub incoming packets
scrub in all

setup a default deny policy
block in all
block out all

pass traffic on the loopback interface in either direction
pass quick on lo0 all

activate spoofing protection for the internal interface.
antispoof quick for $int_if inet

only allow ssh connections from the local network if it's from the
trusted computer, 192.168.0.15. use "block return" so that a TCP RST is
sent to close blocked connections right away. use "quick" so that this
rule is not overridden by the "pass" rules below.
block return in quick on $int_if proto tcp from ! 192.168.0.15 \
 to $int_if port ssh flags S/SA

pass all traffic to and from the local network
pass in on $int_if from $lan_net to any
pass out on $int_if from any to $lan_net

pass tcp, udp, and icmp out on the external (Internet) interface.
keep state on udp and icmp and modulate state on tcp.
pass out on $ext_if proto tcp all modulate state flags S/SA
pass out on $ext_if proto { udp, icmp } all keep state

http://www.openbsd.org/faq/pf/filter.html (8 of 9) [31/10/2005 10:45:16]

PF: Packet Filtering

allow ssh connections in on the external interface as long as they're
NOT destined for the firewall (i.e., they're destined for a machine on
the local network). log the initial packet so that we can later tell
who is trying to connect. use the tcp syn proxy to proxy the connection.
pass in log on $ext_if proto tcp from any to ! <firewall> \
 port ssh flags S/SA synproxy state

[Previous: Tables] [Contents] [Next: Network Address Translation]

 www@openbsd.org

$OpenBSD: filter.html,v 1.32 2005/10/15 20:41:35 joel Exp $

http://www.openbsd.org/faq/pf/filter.html (9 of 9) [31/10/2005 10:45:16]

mailto:www@openbsd.org

PF: Network Address Translation (NAT)

[Previous: Packet Filtering] [Contents] [Next: Traffic Redirection (Port Forwarding)]

PF: Network Address Translation (NAT)

Table of Contents

● Introduction

● How NAT Works

● NAT and Packet Filtering

● IP Forwarding

● Configuring NAT

● Bidirectional Mapping (1:1 mapping)

● Translation Rule Exceptions

● Checking NAT Status

Introduction

Network Address Translation (NAT) is a way to map an entire network (or networks) to a single IP address. NAT is necessary
when the number of IP addresses assigned to you by your Internet Service Provider is less than the total number of computers that
you wish to provide Internet access for. NAT is described in RFC 1631.

NAT allows you to take advantage of the reserved address blocks described in RFC 1918. Typically, your internal network will be

setup to use one or more of these network blocks. They are:

 10.0.0.0/8 (10.0.0.0 - 10.255.255.255)
 172.16.0.0/12 (172.16.0.0 - 172.31.255.255)
 192.168.0.0/16 (192.168.0.0 - 192.168.255.255)

An OpenBSD system doing NAT will have at least two network adapters, one to the Internet, the other to your internal network.
NAT will be translating requests from the internal network so they appear to all be coming from your OpenBSD NAT system.

How NAT Works

When a client on the internal network contacts a machine on the Internet, it sends out IP packets destined for that machine. These
packets contain all the addressing information necessary to get them to their destination. NAT is concerned with these pieces of
information:

● Source IP address (for example, 192.168.1.35)
● Source TCP or UDP port (for example, 2132)

http://www.openbsd.org/faq/pf/nat.html (1 of 6) [31/10/2005 10:45:18]

http://www.openbsd.org/index.html
http://www.geektools.com/rfc/rfc1631.txt
http://www.geektools.com/rfc/rfc1918.txt

PF: Network Address Translation (NAT)

When the packets pass through the NAT gateway they will be modified so that they appear to be coming from the NAT gateway
itself. The NAT gateway will record the changes it makes in its state table so that it can a) reverse the changes on return packets
and b) ensure that return packets are passed through the firewall and are not blocked. For example, the following changes might be
made:

● Source IP: replaced with the external address of the gateway (for example, 24.5.0.5)
● Source port: replaced with a randomly chosen, unused port on the gateway (for example, 53136)

Neither the internal machine nor the Internet host is aware of these translation steps. To the internal machine, the NAT system is
simply an Internet gateway. To the Internet host, the packets appear to come directly from the NAT system; it is completely
unaware that the internal workstation even exists.

When the Internet host replies to the internal machine's packets, they will be addressed to the NAT gateway's external IP (24.5.0.5)
at the translation port (53136). The NAT gateway will then search the state table to determine if the reply packets match an already
established connection. A unique match will be found based on the IP/port combination which tells PF the packets belong to a
connection initiated by the internal machine 192.168.1.35. PF will then make the opposite changes it made to the outgoing packets
and forward the reply packets on to the internal machine.

Translation of ICMP packets happens in a similar fashion but without the source port modification.

NAT and Packet Filtering

NOTE: Translated packets must still pass through the filter engine and will be blocked or passed based on the filter rules that have
been defined. The only exception to this rule is when the pass keyword is used within the nat rule. This will cause the NATed
packets to pass right through the filtering engine.

Also be aware that since translation occurs before filtering, the filter engine will see the translated packet with the translated IP
address and port as outlined in How NAT Works.

IP Forwarding

Since NAT is almost always used on routers and network gateways, it will probably be necessary to enable IP forwarding so that
packets can travel between network interfaces on the OpenBSD machine. IP forwarding is enabled using the sysctl(3) mechanism:

sysctl net.inet.ip.forwarding=1
sysctl net.inet6.ip6.forwarding=1 (if using IPv6)

To make this change permanent, the following lines should be added to /etc/sysctl.conf:

net.inet.ip.forwarding=1
net.inet6.ip6.forwarding=1

These lines are present but commented out (prefixed with a #) in the default install. Remove the # and save the file. IP forwarding
will be enabled when the machine is rebooted.

Configuring NAT

http://www.openbsd.org/faq/pf/nat.html (2 of 6) [31/10/2005 10:45:18]

http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=3&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl.conf&sektion=5&manpath=OpenBSD+3.7

PF: Network Address Translation (NAT)

The general format for NAT rules in pf.conf looks something like this:

nat [pass] on interface [af] from src_addr [port src_port] to \
 dst_addr [port dst_port] -> ext_addr [pool_type] [static-port]

nat
The keyword that begins a NAT rule.

pass
Causes translated packets to completely bypass the filter rules.

interface
The name of the network interface to translate packets on.

af
The address family, either inet for IPv4 or inet6 for IPv6. PF is usually able to determine this parameter based on the
source/destination address(es).

src_addr
The source (internal) address of packets that will be translated. The source address can be specified as:

❍ A single IPv4 or IPv6 address.
❍ A CIDR network block.

❍ A fully qualified domain name that will be resolved via DNS when the ruleset is loaded. All resulting IP
addresses will be substituted into the rule.

❍ The name of a network interface. Any IP addresses assigned to the interface will be substituted into the rule at
load time.

❍ The name of a network interface followed by /netmask (e.g. /24). Each IP address on the interface is
combined with the netmask to form a CIDR network block which is substituted into the rule.

❍ The name of a network interface followed by any one of these modifiers:
■ :network - substitues the CIDR network block (e.g., 192.168.0.0/24)
■ :broadcast - substitutes the network broadcast address (e.g., 192.168.0.255)
■ :peer - substitues the peer's IP address on a point-to-point link

In addition, the :0 modifier can be appended to either an interface name or to any of the above
modifiers to indicate that PF should not include aliased IP addresses in the substituion. These
modifiers can also be used when the interface is contained in parentheses. Example:
fxp0:network:0

❍ A table.

❍ Any of the above but negated using the ! ("not") modifier.
❍ A set of addresses using a list.

❍ The keyword any meaning all addresses
src_port

The source port in the Layer 4 packet header. Ports can be specified as:
❍ A number between 1 and 65535
❍ A valid service name from /etc/services

❍ A set of ports using a list

❍ A range:
■ != (not equal)
■ < (less than)
■ > (greater than)
■ <= (less than or equal)
■ >= (greater than or equal)
■ >< (range)
■ <> (inverse range)

The last two are binary operators (they take two arguments) and do not include the
arguments in the range.

■ : (inclusive range)
The inclusive range operator is also a binary operator and does include the arguments in
the range.

The port option is not usually used in nat rules because the goal is usually to NAT all traffic regardless of the port(s)
being used.

dst_addr
The destination address of packets to be translated. The destination address is specified in the same way as the source

http://www.openbsd.org/faq/pf/nat.html (3 of 6) [31/10/2005 10:45:18]

http://public.pacbell.net/dedicated/cidr.html
http://www.openbsd.org/cgi-bin/man.cgi?query=services&sektion=5&manpath=OpenBSD+3.7

PF: Network Address Translation (NAT)

address.
dst_port

The destination port in the Layer 4 packet header. This port is specified in the same way as the source port.
ext_addr

The external (translation) address on the NAT gateway that packets will be translated to. The external address can be
specified as:

❍ A single IPv4 or IPv6 address.
❍ A CIDR network block.

❍ A fully qualified domain name that will be resolved via DNS when the ruleset is loaded.
❍ The name of the external network interface. Any IP addresses assigned to the interface will be substituted into

the rule at load time.
❍ The name of the external network interface in parentheses (). This tells PF to update the rule if the IP

address(es) on the named interface changes. This is highly useful when the external interface gets its IP
address via DHCP or dial-up as the ruleset doesn't have to be reloaded each time the address changes.

❍ The name of a network interface followed by either one of these modifiers:
■ :network - substitues the CIDR network block (e.g., 192.168.0.0/24)
■ :peer - substitues the peer's IP address on a point-to-point link

In addition, the :0 modifier can be appended to either an interface name or to any of the above
modifiers to indicate that PF should not include aliased IP addresses in the substituion. These
modifiers can also be used when the interface is contained in parentheses. Example:
fxp0:network:0

❍ A set of addresses using a list.

pool_type
Specifies the type of address pool to use for translation.

static-port
Tells PF not to translate the source port in TCP and UDP packets.

This would lead to a most basic form of this line similar to this:

nat on tl0 from 192.168.1.0/24 to any -> 24.5.0.5

This rule says to perform NAT on the tl0 interface for any packets coming from 192.168.1.0/24 and to replace the source IP
address with 24.5.0.5.

While the above rule is correct, it is not recommended form. Maintenance could be difficult as any change of the external or
internal network numbers would require the line be changed. Compare instead with this easier to maintain line (tl0 is external,
dc0 internal):

nat on tl0 from dc0:network to any -> tl0

The advantage should be fairly clear: you can change the IP addresses of either interface without changing this rule.

When specifying an interface name for the translation address as above, the IP address is determined at pf.conf load time, not on
the fly. If you are using DHCP to configure your external interface, this can be a problem. If your assigned IP address changes,
NAT will continue translating outgoing packets using the old IP address. This will cause outgoing connections to stop functioning.
To get around this, you can tell PF to automatically update the translation address by putting parentheses around the interface
name:

nat on tl0 from dc0:network to any -> (tl0)

This method works for translation to both IPv4 and IPv6 addresses.

Bidirectional Mapping (1:1 mapping)

http://www.openbsd.org/faq/pf/nat.html (4 of 6) [31/10/2005 10:45:18]

http://public.pacbell.net/dedicated/cidr.html

PF: Network Address Translation (NAT)

A bidirectional mapping can be established by using the binat rule. A binat rule establishes a one to one mapping between an
internal IP address and an external address. This can be useful, for example, to provide a web server on the internal network with
its own external IP address. Connections from the Internet to the external address will be translated to the internal address and
connections from the web server (such as DNS requests) will be translated to the external address. TCP and UDP ports are never
modified with binat rules as they are with nat rules.

Example:

web_serv_int = "192.168.1.100"
web_serv_ext = "24.5.0.6"

binat on tl0 from $web_serv_int to any -> $web_serv_ext

Translation Rule Exceptions

Exceptions can be made to translation rules by using the no keyword. For example, if the NAT example above was modified to
look like this:

no nat on tl0 from 192.168.1.208 to any
nat on tl0 from 192.168.1.0/24 to any -> 24.2.74.79

Then the entire 192.168.1.0/24 network would have its packets translated to the external address 24.2.74.79 except for
192.168.1.208.

Note that the first matching rule wins; if it's a no rule, then the packet is not translated. The no keyword can also be used with
binat and rdr rules.

Checking NAT Status

To view the active NAT translations pfctl(8) is used with the -s state option. This option will list all the current NAT sessions:

 # pfctl -s state
 fxp0 TCP 192.168.1.35:2132 -> 24.5.0.5:53136 -> 65.42.33.245:22 TIME_WAIT:TIME_WAIT
 fxp0 UDP 192.168.1.35:2491 -> 24.5.0.5:60527 -> 24.2.68.33:53 MULTIPLE:SINGLE

Explanations (first line only):

fxp0
Indicates the interface that the state is bound to. The word self will appear if the state is floating.

TCP
The protocol being used by the connection.

192.168.1.35:2132
The IP address (192.168.1.35) of the machine on the internal network. The source port (2132) is shown after the address.
This is also the address that is replaced in the IP header.

24.5.0.5:53136
The IP address (24.5.0.5) and port (53136) on the gateway that packets are being translated to.

http://www.openbsd.org/faq/pf/nat.html (5 of 6) [31/10/2005 10:45:18]

http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+3.7

PF: Network Address Translation (NAT)

65.42.33.245:22
The IP address (65.42.33.245) and the port (22) that the internal machine is connecting to.

TIME_WAIT:TIME_WAIT
This indicates what state PF believes the TCP connection to be in.

[Previous: Packet Filtering] [Contents] [Next: Traffic Redirection (Port Forwarding)]

 www@openbsd.org

$OpenBSD: nat.html,v 1.20 2005/05/20 00:12:02 joel Exp $

http://www.openbsd.org/faq/pf/nat.html (6 of 6) [31/10/2005 10:45:18]

mailto:www@openbsd.org

PF: Traffic Redirection (Port Forwarding)

[Previous: Network Address Translation] [Contents] [Next: Shortcuts For Creating Rulesets]

PF: Redirection (Port Forwarding)

Table of Contents

● Introduction

● Redirection and Packet Filtering

● Security Implications

● Redirection and Reflection

❍ Split-Horizon DNS

❍ Moving the Server Into a Separate Local Network

❍ TCP Proxying

❍ RDR and NAT Combination

Introduction

When you have NAT running in your office you have the entire Internet available to all your machines. What if you have a
machine behind the NAT gateway that needs to be accessed from outside? This is where redirection comes in. Redirection allows
incoming traffic to be sent to a machine behind the NAT gateway.

Let's look at an example:

rdr on tl0 proto tcp from any to any port 80 -> 192.168.1.20

This line redirects TCP port 80 (web server) traffic to a machine inside the network at 192.168.1.20. So, even though 192.168.1.20
is behind your gateway and inside your network, the outside world can access it.

The from any to any part of the above rdr line can be quite useful. If you know what addresses or subnets are supposed to
have access to the web server at port 80, you can restrict them here:

rdr on tl0 proto tcp from 27.146.49.0/24 to any port 80 -> \
 192.168.1.20

This will redirect only the specified subnet. Note this implies you can redirect different incoming hosts to different machines
behind the gateway. This can be quite useful. For example, you could have users at remote sites access their own desktop
computers using the same port and IP address on the gateway as long as you know the IP address they will be connecting from:

rdr on tl0 proto tcp from 27.146.49.14 to any port 80 -> \

http://www.openbsd.org/faq/pf/rdr.html (1 of 5) [31/10/2005 10:45:19]

http://www.openbsd.org/index.html

PF: Traffic Redirection (Port Forwarding)

 192.168.1.20
rdr on tl0 proto tcp from 16.114.4.89 to any port 80 -> \
 192.168.1.22
rdr on tl0 proto tcp from 24.2.74.178 to any port 80 -> \
 192.168.1.23

A range of ports can also be redirected within the same rule:

rdr on tl0 proto tcp from any to any port 5000:5500 -> \
 192.168.1.20
rdr on tl0 proto tcp from any to any port 5000:5500 -> \
 192.168.1.20 port 6000
rdr on tl0 proto tcp from any to any port 5000:5500 -> \
 192.168.1.20 port 7000:*

These examples show ports 5000 to 5500 inclusive being redirected to 192.168.1.20. In rule #1, port 5000 is redirected to 5000,
5001 to 5001, etc. In rule #2, the entire port range is redirected to port 6000. And in rule #3, port 5000 is redirected to 7000, 5001
to 7001, etc.

Redirection and Packet Filtering

NOTE: Translated packets must still pass through the filter engine and will be blocked or passed based on the filter rules that have
been defined.

The only exception to this rule is when the pass keyword is used within the rdr rule. In this case, the redirected packets will pass
statefully right through the filtering engine: the filter rules won't be evaluated against these packets. This is a handy shortcut to
avoid adding pass filter rules for each redirection rule. Think of it as a normal rdr rule (with no pass keyword) associated to a
pass filter rule with the keep state keyword. However, if you want to enable more specific filtering options such as
synproxy, modulate state, etc. you'll still have to use a dedicate pass rule as these options don't fit into redirection rules.

Also be aware that since translation occurs before filtering, the filter engine will see the translated packet as it looks after it's had
its destination IP address and/or destination port changed to match the redirection address/port specified in the rdr rule. Consider
this scenario:

● 192.0.2.1 - host on the Internet
● 24.65.1.13 - external address of OpenBSD router
● 192.168.1.5 - internal IP address of web server

Redirection rule:

rdr on tl0 proto tcp from 192.0.2.1 to 24.65.1.13 port 80 \
 -> 192.168.1.5 port 8000

Packet before the rdr rule is processed:

● Source address: 192.0.2.1
● Source port: 4028 (arbitrarily chosen by the operating system)
● Destination address: 24.65.1.13
● Destination port: 80

Packet after the rdr rule is processed:

http://www.openbsd.org/faq/pf/rdr.html (2 of 5) [31/10/2005 10:45:19]

PF: Traffic Redirection (Port Forwarding)

● Source address: 192.0.2.1
● Source port: 4028
● Destination address: 192.168.1.5
● Destination port: 8000

The filter engine will see the IP packet as it looks after translation has taken place.

Security Implications

Redirection does have security implications. Punching a hole in the firewall to allow traffic into the internal, protected network
potentially opens up the internal machine to compromise. If traffic is forwarded to an internal web server for example, and a
vulnerability is discovered in the web server daemon or in a CGI script run on the web server, then that machine can be
compromised from an intruder on the Internet. From there, the intruder has a doorway to the internal network, one that is permitted
to pass right through the firewall.

These risks can be minimized by keeping the externally accessed system tightly confined on a separate network. This network is
often referred to as a Demilitarized Zone (DMZ) or a Private Service Network (PSN). This way, if the web server is compromised,
the effects can be limited to the DMZ/PSN network by careful filtering of the traffic permitted to and from the DMZ/PSN.

Redirection and Reflection

Often, redirection rules are used to forward incoming connections from the Internet to a local server with a private address in the
internal network or LAN, as in:

server = 192.168.1.40

rdr on $ext_if proto tcp from any to $ext_if port 80 -> $server \
 port 80

But when the redirection rule is tested from a client on the LAN, it doesn't work. The reason is that redirection rules apply only to
packets that pass through the specified interface ($ext_if, the external interface, in the example). Connecting to the external
address of the firewall from a host on the LAN, however, does not mean the packets will actually pass through its external
interface. The TCP/IP stack on the firewall compares the destination address of incoming packets with its own addresses and
aliases and detects connections to itself as soon as they have passed the internal interface. Such packets do not physically pass
through the external interface, and the stack does not simulate such a passage in any way. Thus, PF never sees these packets on the
external interface, and the redirection rule, specifying the external interface, does not apply.

Adding a second redirection rule for the internal interface does not have the desired effect either. When the local client connects to
the external address of the firewall, the initial packet of the TCP handshake reaches the firewall through the internal interface. The
redirection rule does apply and the destination address gets replaced with that of the internal server. The packet gets forwarded
back through the internal interface and reaches the internal server. But the source address has not been translated, and still contains
the local client's address, so the server sends its replies directly to the client. The firewall never sees the reply and has no chance to
properly reverse the translation. The client receives a reply from a source it never expected and drops it. The TCP handshake then
fails and no connection can be established.

Still, it's often desirable for clients on the LAN to connect to the same internal server as external clients and to do so transparently.
There are several solutions for this problem:

Split-Horizon DNS

It's possible to configure DNS servers to answer queries from local hosts differently than external queries so that local clients will

http://www.openbsd.org/faq/pf/rdr.html (3 of 5) [31/10/2005 10:45:19]

PF: Traffic Redirection (Port Forwarding)

receive the internal server's address during name resolution. They will then connect directly to the local server, and the firewall
isn't involved at all. This reduces local traffic since packets don't have to be sent through the firewall.

Moving the Server Into a Separate Local Network

Adding an additional network interface to the firewall and moving the local server from the client's network into a dedicated
network (DMZ) allows redirecting of connections from local clients in the same way as the redirection of external connections.
Use of separate networks has several advantages, including improving security by isolating the server from the remaining local
hosts. Should the server (which in our case is reachable from the Internet) ever become compromised, it can't access other local
hosts directly as all connections have to pass through the firewall.

TCP Proxying

A generic TCP proxy can be setup on the firewall, either listening on the port to be forwarded or getting connections on the
internal interface redirected to the port it's listening on. When a local client connects to the firewall, the proxy accepts the
connection, establishes a second connection to the internal server, and forwards data between those two connections.

Simple proxies can be created using inetd(8) and nc(1). The following /etc/inetd.conf entry creates a listening socket

bound to the loopback address (127.0.0.1) and port 5000. Connections are forwarded to port 80 on server 192.168.1.10.

127.0.0.1:5000 stream tcp nowait nobody /usr/bin/nc nc -w \
 20 192.168.1.10 80

The following redirection rule forwards port 80 on the internal interface to the proxy:

rdr on $int_if proto tcp from $int_net to $ext_if port 80 -> \
 127.0.0.1 port 5000

RDR and NAT Combination

With an additional NAT rule on the internal interface, the lacking source address translation described above can be achieved.

rdr on $int_if proto tcp from $int_net to $ext_if port 80 -> \
 $server
no nat on $int_if proto tcp from $int_if to $int_net
nat on $int_if proto tcp from $int_net to $server port 80 -> \
 $int_if

This will cause the initial packet from the client to be translated again when it's forwarded back through the internal interface,
replacing the client's source address with the firewall's internal address. The internal server will reply back to the firewall, which
can reverse both NAT and RDR translations when forwarding to the local client. This construct is rather complex as it creates two
separate states for each reflected connection. Care must be taken to prevent the NAT rule from applying to other traffic, for
instance connections originating from external hosts (through other redirections) or the firewall itself. Note that the rdr rule above
will cause the TCP/IP stack to see packets arriving on the internal interface with a destination address inside the internal network.

In general, the previously mentioned solutions should be used instead.

[Previous: Network Address Translation] [Contents] [Next: Shortcuts For Creating Rulesets]

http://www.openbsd.org/faq/pf/rdr.html (4 of 5) [31/10/2005 10:45:19]

http://www.openbsd.org/cgi-bin/man.cgi?query=inetd&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=nc&sektion=1&manpath=OpenBSD+3.7

PF: Traffic Redirection (Port Forwarding)

 www@openbsd.org

$OpenBSD: rdr.html,v 1.23 2005/06/12 18:14:50 joel Exp $

http://www.openbsd.org/faq/pf/rdr.html (5 of 5) [31/10/2005 10:45:19]

mailto:www@openbsd.org

PF: Shortcuts For Creating Rulesets

[Previous: Traffic Redirection (Port Forwarding)] [Contents] [Next: Runtime Options]

PF: Shortcuts For Creating Rulesets

Table of Contents

● Introduction

● Using Macros

● Using Lists

● PF Grammar

❍ Elimination of Keywords

❍ Return Simplification

❍ Keyword Ordering

Introduction

PF offers many ways in which a ruleset can be simplified. Some good examples are by using macros and lists. In addition, the

ruleset language, or grammar, also offers some shortcuts for making a ruleset simpler. As a general rule of thumb, the simpler a
ruleset is, the easier it is to understand and to maintain.

Using Macros

Macros are useful because they provide an alternative to hard-coding addresses, port numbers, interfaces names, etc., into a ruleset.
Did a server's IP address change? No problem, just update the macro; no need to mess around with the filter rules that you've spent
time and energy perfecting for your needs.

A common convention in PF rulesets is to define a macro for each network interface. If a network card ever needs to be replaced
with one that uses a different driver, for example swapping out a 3Com for an Intel, the macro can be updated and the filter rules
will function as before. Another benefit is when installing the same ruleset on multiple machines. Certain machines may have
different network cards in them, and using macros to define the network interfaces allows the rulesets to be installed with minimal
editing. Using macros to define information in a ruleset that is subject to change, such as port numbers, IP addresses, and interface
names, is recommended practice.

define macros for each network interface
IntIF = "dc0"
ExtIF = "fxp0"
DmzIF = "fxp1"

Another common convention is using macros to define IP addresses and network blocks. This can greatly reduce the maintenance
of a ruleset when IP addresses change.

http://www.openbsd.org/faq/pf/shortcuts.html (1 of 5) [31/10/2005 10:45:23]

http://www.openbsd.org/index.html

PF: Shortcuts For Creating Rulesets

define our networks
IntNet = "192.168.0.0/24"
ExtAdd = "24.65.13.4"
DmzNet = "10.0.0.0/24"

If the internal network ever expanded or was renumbered into a different IP block, the macro can be updated:

IntNet = "{ 192.168.0.0/24, 192.168.1.0/24 }"

Once the ruleset is reloaded, everything will work as before.

Using Lists

Let's look at a good set of rules to have in your ruleset to handle RFC 1918 addresses that just shouldn't be floating around the

Internet, and when they are, are usually trying to cause trouble:

block in quick on tl0 inet from 127.0.0.0/8 to any
block in quick on tl0 inet from 192.168.0.0/16 to any
block in quick on tl0 inet from 172.16.0.0/12 to any
block in quick on tl0 inet from 10.0.0.0/8 to any
block out quick on tl0 inet from any to 127.0.0.0/8
block out quick on tl0 inet from any to 192.168.0.0/16
block out quick on tl0 inet from any to 172.16.0.0/12
block out quick on tl0 inet from any to 10.0.0.0/8

Now look at the following simplification:

block in quick on tl0 inet from { 127.0.0.0/8, 192.168.0.0/16, \
 172.16.0.0/12, 10.0.0.0/8 } to any
block out quick on tl0 inet from any to { 127.0.0.0/8, \
 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8 }

The ruleset has been reduced from eight lines down to two. Things get even better when macros are used in conjunction with a list:

NoRouteIPs = "{ 127.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12, \
 10.0.0.0/8 }"
ExtIF = "tl0"
block in quick on $ExtIF from $NoRouteIPs to any
block out quick on $ExtIF from any to $NoRouteIPs

Note that macros and lists simplify the pf.conf file, but the lines are actually expanded by pfctl(8) into multiple rules. So, the

above example actually expands to the following rules:

block in quick on tl0 inet from 127.0.0.0/8 to any
block in quick on tl0 inet from 192.168.0.0/16 to any
block in quick on tl0 inet from 172.16.0.0/12 to any
block in quick on tl0 inet from 10.0.0.0/8 to any
block out quick on tl0 inet from any to 10.0.0.0/8
block out quick on tl0 inet from any to 172.16.0.0/12
block out quick on tl0 inet from any to 192.168.0.0/16
block out quick on tl0 inet from any to 127.0.0.0/8

http://www.openbsd.org/faq/pf/shortcuts.html (2 of 5) [31/10/2005 10:45:23]

http://www.geektools.com/rfc/rfc1918.txt
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+3.7

PF: Shortcuts For Creating Rulesets

As you can see, the PF expansion is purely a convenience for the writer and maintainer of the pf.conf file, not an actual
simplification of the rules processed by pf(4).

Macros can be used to define more than just addresses and ports; they can be used anywhere in a PF rules file:

pre = "pass in quick on ep0 inet proto tcp from "
post = "to any port { 80, 6667 } keep state"

David's classroom
$pre 21.14.24.80 $post

Nick's home
$pre 24.2.74.79 $post
$pre 24.2.74.178 $post

Expands to:

pass in quick on ep0 inet proto tcp from 21.14.24.80 to any \
 port = 80 keep state
pass in quick on ep0 inet proto tcp from 21.14.24.80 to any \
 port = 6667 keep state
pass in quick on ep0 inet proto tcp from 24.2.74.79 to any \
 port = 80 keep state
pass in quick on ep0 inet proto tcp from 24.2.74.79 to any \
 port = 6667 keep state
pass in quick on ep0 inet proto tcp from 24.2.74.178 to any \
 port = 80 keep state
pass in quick on ep0 inet proto tcp from 24.2.74.178 to any \
 port = 6667 keep state

PF Grammar

Packet Filter's grammar is quite flexible which, in turn, allows for great flexibility in a ruleset. PF is able to infer certain keywords
which means that they don't have to be explicitly stated in a rule, and keyword ordering is relaxed such that it isn't necessary to
memorize strict syntax.

Elimination of Keywords

To define a "default deny" policy, two rules are used:

block in all
block out all

This can now be reduced to:

block all

When no direction is specified, PF will assume the rule applies to packets moving in both directions.

Similarly, the "from any to any" and "all" clauses can be left out of a rule, for example:

http://www.openbsd.org/faq/pf/shortcuts.html (3 of 5) [31/10/2005 10:45:23]

http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&manpath=OpenBSD+3.7

PF: Shortcuts For Creating Rulesets

block in on rl0 all
pass in quick log on rl0 proto tcp from any to any port 22 keep state

can be simplified as:

block in on rl0
pass in quick log on rl0 proto tcp to port 22 keep state

The first rule blocks all incoming packets from anywhere to anywhere on rl0, and the second rule passes in TCP traffic on rl0 to
port 22.

Return Simplification

A ruleset used to block packets and reply with a TCP RST or ICMP Unreachable response could look like this:

block in all
block return-rst in proto tcp all
block return-icmp in proto udp all
block out all
block return-rst out proto tcp all
block return-icmp out proto udp all

This can be simplified as:

block return

When PF sees the return keyword, it's smart enough to send the proper response, or no response at all, depending on the
protocol of the packet being blocked.

Keyword Ordering

The order in which keywords are specified is flexible in most cases. For example, a rule written as:

pass in log quick on rl0 proto tcp to port 22 \
 flags S/SA keep state queue ssh label ssh

Can also be written as:

pass in quick log on rl0 proto tcp to port 22 \
 queue ssh keep state label ssh flags S/SA

Other, similar variations will also work.

[Previous: Traffic Redirection (Port Forwarding)] [Contents] [Next: Runtime Options]

 www@openbsd.org

http://www.openbsd.org/faq/pf/shortcuts.html (4 of 5) [31/10/2005 10:45:23]

mailto:www@openbsd.org

PF: Shortcuts For Creating Rulesets

$OpenBSD: shortcuts.html,v 1.15 2005/05/20 00:12:02 joel Exp $

http://www.openbsd.org/faq/pf/shortcuts.html (5 of 5) [31/10/2005 10:45:23]

PF: Runtime Options

[Previous: Shortcuts For Creating Rulesets] [Contents] [Next: Scrub (Packet Normalization)]

PF: Runtime Options

Options are used to control PF's operation. Options are specified in pf.conf using the set directive.

NOTE: In OpenBSD 3.7 and later, the behavior of runtime options has changed. Previously, once an option was set it was never reset to its default value, even if
the ruleset was reloaded. Starting in OpenBSD 3.7, whenever a ruleset is loaded, the runtime options are reset to default values before the ruleset is parsed. Thus,
if an option is set and is then removed from the ruleset and the ruleset reloaded, the option will be reset to its default value.

set block-policy option
Sets the default behavior for filter rules that specify the block action.

❍ drop - packet is silently dropped.
❍ return - a TCP RST packet is returned for blocked TCP packets and an ICMP Unreachable packet is returned for all others.

Note that individual filter rules can override the default response. The default is drop.

set debug option
Set pf's debugging level.

❍ none - no debugging messages are shown.
❍ urgent - debug messages generated for serious errors.
❍ misc - debug messages generated for various errors (e.g., to see status from the packet normalizer/scrubber and for state creation failures).
❍ loud - debug messages generated for common conditions (e.g., to see status from the passive OS fingerprinter).

The default is urgent.

set fingerprints file
Sets the file to load operating system fingerprints from. For use with passive OS fingerprinting. The default is /etc/pf.os.

set limit option value
Set various limits on pf's operation.

❍ frags - maximum number of entries in the memory pool used for packet reassembly (scrub rules). Default is 5000.

❍ src-nodes - maximum number of entries in the memory pool used for tracking source IP addresses (generated by the sticky-address
and source-track options). Default is 10000.

❍ states - maximum number of entries in the memory pool used for state table entries (filter rules that specify keep state). Default is

10000.

set loginterface interface
Sets the interface for which PF should gather statistics such as bytes in/out and packets passed/blocked. Statistics can only be gathered for one interface
at a time. Note that the match, bad-offset, etc., counters and the state table counters are recorded regardless of whether loginterface is set or
not. To turn this option off, set it to none. The default is none.

set optimization option
Optimize PF for one of the following network environments:

❍ normal - suitable for almost all networks.
❍ high-latency - high latency networks such as satellite connections.
❍ aggressive - aggressively expires connections from the state table. This can greatly reduce the memory requirements on a busy firewall at

the risk of dropping idle connections early.
❍ conservative - extremely conservative settings. This avoids dropping idle connections at the expense of greater memory utilization and

slightly increased processor utilization.
The default is normal.

set skip on interface
Skip all PF processing on interface. This can be useful on loopback interfaces where filtering, normalization, queueing, etc, are not required. This
option can be used multiple times. By default this option is not set.

set state-policy option
Sets PF's behavior when it comes to keeping state. This behavior can be overridden on a per rule basis. See Keeping State.

❍ if-bound - states are bound to the interface they're created on. If traffic matches a state table entry but is not crossing the interface recorded

http://www.openbsd.org/faq/pf/options.html (1 of 2) [31/10/2005 10:45:24]

http://www.openbsd.org/index.html

PF: Runtime Options

in that state entry, the match is rejected. The packet must then match a filter rule or will be dropped/rejected altogether.
❍ group-bound - same behavior as if-bound except packets are allowed to cross interfaces in the same group, i.e., all ppp interfaces, etc.
❍ floating - states can match packets on any interface. As long as the packet matches a state entry and is passing in the same direction as it

was on the interface when the state was created, it does not matter what interface it's crossing, it will pass.
The default is floating.

set timeout option value
Set various timeouts (in seconds).

❍ interval - seconds between purges of expired states and packet fragments. The default is 10.
❍ frag - seconds before an unassembled fragment is expired. The default is 30.
❍ src.track - seconds to keep a source tracking entry in memory after the last state expires. The default is 0 (zero).

Example:

set timeout interval 10
set timeout frag 30
set limit { frags 5000, states 2500 }
set optimization high-latency
set block-policy return
set loginterface dc0
set fingerprints /etc/pf.os.test
set skip on lo0
set state-policy if-bound

[Previous: Shortcuts For Creating Rulesets] [Contents] [Next: Scrub (Packet Normalization)]

 www@openbsd.org

$OpenBSD: options.html,v 1.14 2005/06/25 03:42:27 nick Exp $

http://www.openbsd.org/faq/pf/options.html (2 of 2) [31/10/2005 10:45:24]

mailto:www@openbsd.org

PF: Scrub (Packet Normalization)

[Previous: Runtime Options] [Contents] [Next: Anchors]

PF: Scrub (Packet Normalization)

Table of Contents

● Introduction

● Options

Introduction

"Scrubbing" is the normalization of packets so there are no ambiguities in interpretation by the ultimate destination of the packet.
The scrub directive also reassembles fragmented packets, protecting some operating systems from some forms of attack, and drops
TCP packets that have invalid flag combinations. A simple form of the scrub directive:

scrub in all

This will scrub all incoming packets on all interfaces.

One reason not to scrub on an interface is if one is passing NFS through PF. Some non-OpenBSD platforms send (and expect)
strange packets -- fragmented packets with the "do not fragment" bit set, which are (properly) rejected by scrub. This can be
resolved by use of the no-df option. Another reason is some multi-player games have connection problems passing through PF
with scrub enabled. Other than these somewhat unusual cases, scrubbing all packets is highly recommended practice.

The scrub directive syntax is very similar to the filtering syntax which makes it easy to selectively scrub certain packets and not

others. The no keyword can be used in front of scrub to specify packets that will not be scrubbed. Just as with nat rules, the

first matching rule wins.

More on the principle and concepts of scrubbing can be found in the paper Network Intrusion Detection: Evasion, Traffic

Normalization, and End-to-End Protocol Semantics.

Options

Scrub has the following options:

no-df
Clears the don't fragment bit from the IP packet header. Some operating systems are known to generate fragmented
packets with the don't fragment bit set. This is particularly true with NFS. Scrub will drop such packets unless the no-

http://www.openbsd.org/faq/pf/scrub.html (1 of 2) [31/10/2005 10:45:26]

http://www.openbsd.org/index.html
http://www.icir.org/vern/papers/norm-usenix-sec-01-html/index.html
http://www.icir.org/vern/papers/norm-usenix-sec-01-html/index.html

PF: Scrub (Packet Normalization)

df option is specified. Because some operating systems generate don't fragment packets with a zero IP identification
header field, using no-df in conjunction with random-id is recommended.

random-id
Replaces the IP identification field of outgoing packets with random values to compensate for operating systems that use
predictable values. This option only applies to outgoing packets that are not fragmented after the optional packet
reassembly.

min-ttl num
Enforces a minimum Time To Live (TTL) in IP packet headers.

max-mss num
Enforces a maximum Maximum Segment Size (MSS) in TCP packet headers.

fragment reassemble
Buffers incoming packet fragments and reassembles them into a complete packet before passing them to the filter
engine. The advantage is that filter rules only have to deal with complete packets and can ignore fragments. The
drawback is the increased memory needed to buffer packet fragments. This is the default behavior when no fragment
option is specified. This is also the only fragment option that works with NAT.

fragment crop
Causes duplicate fragments to be dropped and any overlaps to be cropped. Unlike fragment reassemble,
fragments are not buffered but are passed on as soon as they arrive.

fragment drop-ovl
Similar to fragment crop except that all duplicate or overlapping fragments will be dropped as well as any further
corresponding fragments.

reassemble tcp
Statefully normalizes TCP connections. When using scrub reassemble tcp, a direction (in/out) may not be
specified. The following normalizations are performed:

❍ Neither side of the connection is allowed to reduce their IP TTL. This is done to protect against an attacker
sending a packet such that it reaches the firewall, affects the held state information for the connection, and
expires before reaching the destination host. The TTL of all packets is raised to the highest value seen for the
connection.

❍ Modulate RFC1323 timestamps in TCP packet headers with a random number. This can prevent an observer

from deducing the uptime of the host or from guessing how many hosts are behind a NAT gateway.

Examples:

scrub in on fxp0 all fragment reassemble min-ttl 15 max-mss 1400
scrub in on fxp0 all no-df
scrub on fxp0 all reassemble tcp

[Previous: Runtime Options] [Contents] [Next: Anchors]

 www@openbsd.org

$OpenBSD: scrub.html,v 1.12 2005/02/07 05:56:39 joel Exp $

http://www.openbsd.org/faq/pf/scrub.html (2 of 2) [31/10/2005 10:45:26]

http://www.geektools.com/rfc/rfc1323.txt
mailto:www@openbsd.org

PF: Anchors

[Previous: Scrub (Packet Normalization)] [Contents] [Next: Packet Queueing and Prioritization]

PF: Anchors

Table of Contents

● Introduction

● Anchors

● Anchor Options

● Manipulating Anchors

Introduction

In addition to the main ruleset, PF can also evaluate sub rulesets. Since sub rulesets can be manipulated on the fly by using
pfctl(8), they provide a convenient way of dynamically altering an active ruleset. Whereas a table is used to hold a dynamic list of

addresses, a sub ruleset is used to hold a dynamic set of filter, nat, rdr, and binat rules.

Sub rulesets are attached to the main ruleset by using anchors. There are four types of anchor rules:

● anchor name - evaluates all filter rules in the anchor name

● binat-anchor name - evaluates all binat rules in the anchor name

● nat-anchor name - evaluates all nat rules in the anchor name

● rdr-anchor name - evaluates all rdr rules in the anchor name

Anchors can be nested which allows for sub rulesets to be chained together. Anchor rules will be evaluated relative to the anchor in
which they are loaded. For example, anchor rules in the main ruleset will create anchor attachment points with the main ruleset as
their parent, and anchor rules loaded from files with the load anchor directive will create anchor points with that anchor as
their parent.

Anchors

An anchor is a collection of filter and/or translation rules, tables, and other anchors that has been assigned a name. When PF comes
across an anchor rule in the main ruleset, it will evaluate the rules contained within the anchor point as it evaluates rules in the
main ruleset. Processing will then continue in the main ruleset unless the packet matches a filter rule that uses the quick option or
a translation rule within the anchor in which case the match will be considered final and will abort the evaluation of rules in both
the anchor and the main rulesets.

For example:

http://www.openbsd.org/faq/pf/anchors.html (1 of 3) [31/10/2005 10:45:28]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+3.7

PF: Anchors

ext_if = "fxp0"

block on $ext_if all
pass out on $ext_if all keep state
anchor goodguys

This ruleset sets a default deny policy on fxp0 for both incoming and outgoing traffic. Traffic is then statefully passed out and an
anchor rule is created named goodguys. Anchors can be populated with rules by two methods:

● using a load rule
● using pfctl(8)

The load rule causes pfctl to populate the specified anchor by reading rules from a text file. The load rule must be placed
after the anchor rule. Example:

anchor goodguys
load anchor goodguys from "/etc/anchor-goodguys-ssh"

To add rules to an anchor using pfctl, the following type of command can be used:

echo "pass in proto tcp from 192.0.2.3 to any port 22" \
 | pfctl -a goodguys -f -

Rules can also be saved and loaded from a text file:

cat >> /etc/anchor-goodguys-www
pass in proto tcp from 192.0.2.3 to any port 80
pass in proto tcp from 192.0.2.4 to any port { 80 443 }

pfctl -a goodguys -f /etc/anchor-goodguys-www

Filter and translation rules can be loaded into an anchor using the same syntax and options as rules loaded into the main ruleset.
One caveat, however, is that any macros that are used must also be defined within the anchor itself; macros that are defined in the

parent ruleset are not visible from the anchor.

Since anchors can be nested, it's possible to specify that all child anchors within a specified anchor be evaluated:

anchor "spam/*"

This syntax causes each rule within each anchor attached to the spam anchor to be evaluated. The child anchors will be evaluated
in alphabetical order but are not descended into recursively. Anchors are always evaluated relative to the anchor in which they're
defined.

Each anchor, as well as the main ruleset, exist separately from the other rulesets. Operations done on one ruleset, such as flushing
the rules, do not affect any of the others. In addition, removing an anchor point from the main ruleset does not destroy the anchor
or any child anchors that are attached to that anchor. An anchor is not destroyed until it's flushed of all rules using pfctl(8) and

there are no child anchors within the anchor.

Anchor Options

http://www.openbsd.org/faq/pf/anchors.html (2 of 3) [31/10/2005 10:45:28]

http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+3.7

PF: Anchors

Optionally, anchor rules can specify interface, protocol, source and destination address, tag, etc., using the same syntax as filter
rules. When such information is given, anchor rules are only processed if the packet matches the anchor rule's definition. For
example:

ext_if = "fxp0"

block on $ext_if all
pass out on $ext_if all keep state
anchor ssh in on $ext_if proto tcp from any to any port 22

The rules in the anchor ssh are only evaluated for TCP packets destined for port 22 that come in on fxp0. Rules are then added
to the anchor like so:

echo "pass in from 192.0.2.10 to any" | pfctl -a ssh -f -

So, even though the filter rule doesn't specify an interface, protocol, or port, the host 192.0.2.10 will only be permitted to connect
using SSH because of the anchor rule's definition.

Manipulating Anchors

Manipulation of anchors is performed via pfctl. It can be used to add and remove rules from an anchor without reloading the
main ruleset.

To list all the rules in the anchor named ssh:

pfctl -a ssh -s rules

To flush all filter rules from the same anchor:

pfctl -a ssh -F rules

For a full list of commands, please see pfctl(8).

[Previous: Scrub (Packet Normalization)] [Contents] [Next: Packet Queueing and Prioritization]

 www@openbsd.org

$OpenBSD: anchors.html,v 1.17 2005/05/20 00:12:02 joel Exp $

http://www.openbsd.org/faq/pf/anchors.html (3 of 3) [31/10/2005 10:45:28]

http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+3.7
mailto:www@openbsd.org

PF: Packet Queueing and Prioritization

[Previous: Anchors] [Contents] [Next: Address Pools and Load Balancing]

PF: Packet Queueing and Prioritization

Table of Contents

● Queueing

● Schedulers

❍ Class Based Queueing

❍ Priority Queueing

❍ Random Early Detection

❍ Explicit Congestion Notification

● Configuring Queueing

● Assigning Traffic to a Queue

● Example #1: Small, Home Network

● Example #2: Company Network

Queueing

To queue something is to store it, in order, while it awaits processing. In a computer network, when data packets are sent out from a host, they enter a queue
where they await processing by the operating system. The operating system then decides which queue and which packet(s) from that queue should be processed.
The order in which the operating system selects the packets to process can affect network performance. For example, imagine a user running two network
applications: SSH and FTP. Ideally, the SSH packets should be processed before the FTP packets because of the time-sensitive nature of SSH; when a key is
typed in the SSH client, an immediate response is expected, but an FTP transfer being delayed by a few extra seconds hardly bears any notice. But what happens
if the router handling these connections processes a large chunk of packets from the FTP connection before processing the SSH connection? Packets from the
SSH connection will remain in the queue (or possibly be dropped by the router if the queue isn't big enough to hold all of the packets) and the SSH session may
appear to lag or slow down. By modifying the queueing strategy being used, network bandwidth can be shared fairly between different applications, users, and
computers.

Note that queueing is only useful for packets in the outbound direction. Once a packet arrives on an interface in the inbound direction it's already too late to queue
it -- it's already consumed network bandwidth to get to the interface that just received it. The only solution is to enable queueing on the adjacent router or, if the
host that received the packet is acting as a router, to enable queueing on the internal interface where packets exit the router.

Schedulers

The scheduler is what decides which queues to process and in what order. By default, OpenBSD uses a First In First Out (FIFO) scheduler. A FIFO queue works
like the line-up at a supermarket's checkout -- the first item into the queue is the first processed. As new packets arrive they are added to the end of the queue. If
the queue becomes full, and here the analogy with the supermarket stops, newly arriving packets are dropped. This is known as tail-drop.

OpenBSD supports two additional schedulers:

● Class Based Queueing
● Priority Queueing

Class Based Queueing

Class Based Queueing (CBQ) is a queueing algorithm that divides a network connection's bandwidth among multiple queues or classes. Each queue then has
traffic assigned to it based on source or destination address, port number, protocol, etc. A queue may optionally be configured to borrow bandwidth from its
parent queue if the parent is being under-utilized. Queues are also given a priority such that those containing interactive traffic, such as SSH, can have their
packets processed ahead of queues containing bulk traffic, such as FTP.

http://www.openbsd.org/faq/pf/queueing.html (1 of 9) [31/10/2005 10:45:31]

http://www.openbsd.org/index.html

PF: Packet Queueing and Prioritization

CBQ queues are arranged in an hierarchical manner. At the top of the hierarchy is the root queue which defines the total amount of bandwidth available. Child
queues are created under the root queue, each of which can be assigned some portion of the root queue's bandwidth. For example, queues might be defined as
follows:

Root Queue (2Mbps)
Queue A (1Mbps)
Queue B (500Kbps)
Queue C (500Kbps)

In this case, the total available bandwidth is set to 2 megabits per second (Mbps). This bandwidth is then split among three child queues.

The hierarchy can further be expanded by defining queues within queues. To split bandwidth equally among different users and also classify their traffic so that
certain protocols don't starve others for bandwidth, a queueing structure like this might be defined:

Root Queue (2Mbps)
UserA (1Mbps)

ssh (50Kbps)
bulk (950Kbps)

UserB (1Mbps)
audio (250Kbps)
bulk (750Kbps)

http (100Kbps)
other (650Kbps)

Note that at each level the sum of the bandwidth assigned to each of the queues is not more than the bandwidth assigned to the parent queue.

A queue can be configured to borrow bandwidth from its parent if the parent has excess bandwidth available due to it not being used by the other child queues.
Consider a queueing setup like this:

Root Queue (2Mbps)
UserA (1Mbps)

ssh (100Kbps)
ftp (900Kbps, borrow)

UserB (1Mbps)

If traffic in the ftp queue exceeds 900Kbps and traffic in the UserA queue is less than 1Mbps (because the ssh queue is using less than its assigned 100Kbps),
the ftp queue will borrow the excess bandwidth from UserA. In this way the ftp queue is able to use more than its assigned bandwidth when it faces overload.
When the ssh queue increases its load, the borrowed bandwidth will be returned.

CBQ assigns each queue a priority level. Queues with a higher priority are preferred during congestion over queues with a lower priority as long as both queues
share the same parent (in other words, as long as both queues are on the same branch in the hierarchy). Queues with the same priority are processed in a round-
robin fashion. For example:

Root Queue (2Mbps)
UserA (1Mbps, priority 1)

ssh (100Kbps, priority 5)
ftp (900Kbps, priority 3)

UserB (1Mbps, priority 1)

CBQ will process the UserA and UserB queues in a round-robin fashion -- neither queue will be preferred over the other. During the time when the UserA
queue is being processed, CBQ will also process its child queues. In this case, the ssh queue has a higher priority and will be given preferential treatment over
the ftp queue if the network is congested. Note how the ssh and ftp queues do not have their priorities compared to the UserA and UserB queues because
they are not all on the same branch in the hierarchy.

For a more detailed look at the theory behind CBQ, please see References on CBQ.

Priority Queueing

Priority Queueing (PRIQ) assigns multiple queues to a network interface with each queue being given a unique priority level. A queue with a higher priority is
always processed ahead of a queue with a lower priority.

The queueing structure in PRIQ is flat -- you cannot define queues within queues. The root queue is defined, which sets the total amount of bandwidth that is
available, and then sub queues are defined under the root. Consider the following example:

http://www.openbsd.org/faq/pf/queueing.html (2 of 9) [31/10/2005 10:45:31]

http://www.icir.org/floyd/cbq.html

PF: Packet Queueing and Prioritization

Root Queue (2Mbps)
Queue A (priority 1)
Queue B (priority 2)
Queue C (priority 3)

The root queue is defined as having 2Mbps of bandwidth available to it and three subqueues are defined. The queue with the highest priority (the highest priority
number) is served first. Once all the packets in that queue are processed, or if the queue is found to be empty, PRIQ moves onto the queue with the next highest
priority. Within a given queue, packets are processed in a First In First Out (FIFO) manner.

It is important to note that when using PRIQ you must plan your queues very carefully. Because PRIQ always processes a higher priority queue before a lower
priority one, it's possible for a high priority queue to cause packets in a lower priority queue to be delayed or dropped if the high priority queue is receiving a
constant stream of packets.

Random Early Detection

Random Early Detection (RED) is a congestion avoidance algorithm. Its job is to avoid network congestion by making sure that the queue doesn't become full. It
does this by continually calculating the average length (size) of the queue and comparing it to two thresholds, a minimum threshold and a maximum threshold. If
the average queue size is below the minimum threshold then no packets will be dropped. If the average is above the maximum threshold then all newly arriving
packets will be dropped. If the average is between the threshold values then packets are dropped based on a probability calculated from the average queue size. In
other words, as the average queue size approaches the maximum threshold, more and more packets are dropped. When dropping packets, RED randomly chooses
which connections to drop packets from. Connections using larger amounts of bandwidth have a higher probability of having their packets dropped.

RED is useful because it avoids a situation known as global synchronization and it is able to accommodate bursts of traffic. Global synchronization refers to a
loss of total throughput due to packets being dropped from several connections at the same time. For example, if congestion occurs at a router carrying traffic for
10 FTP connections and packets from all (or most) of these connections are dropped (as is the case with FIFO queueing), overall throughput will drop sharply.
This isn't an ideal situation because it causes all of the FTP connections to reduce their throughput and also means that the network is no longer being used to its
maximum potential. RED avoids this by randomly choosing which connections to drop packets from instead of choosing all of them. Connections using large
amounts of bandwidth have a higher chance of their packets being dropped. In this way, high bandwidth connections will be throttled back, congestion will be
avoided, and sharp losses of overall throughput will not occur. In addition, RED is able to handle bursts of traffic because it starts to drop packets before the
queue becomes full. When a burst of traffic comes through there will be enough space in the queue to hold the new packets.

RED should only be used when the transport protocol is capable of responding to congestion indicators from the network. In most cases this means RED should
be used to queue TCP traffic and not UDP or ICMP traffic.

For a more detailed look at the theory behind RED, please see References on RED.

Explicit Congestion Notification

Explicit Congestion Notification (ECN) works in conjunction with RED to notify two hosts communicating over the network of any congestion along the
communication path. It does this by enabling RED to set a flag in the packet header instead of dropping the packet. Assuming the sending host has support for
ECN, it can then read this flag and throttle back its network traffic accordingly.

For more information on ECN, please refer to RFC 3168.

Configuring Queueing

Since OpenBSD 3.0 the Alternate Queueing (ALTQ) queueing implementation has been a part of the base system. Starting with OpenBSD 3.3 ALTQ has been

integrated into PF. OpenBSD's ALTQ implementation supports the Class Based Queueing (CBQ) and Priority Queueing (PRIQ) schedulers. It also supports
Random Early Detection (RED) and Explicit Congestion Notification (ECN).

Because ALTQ has been merged with PF, PF must be enabled for queueing to work. Instructions on how to enable PF can be found in Getting Started.

Queueing is configured in pf.conf. There are two types of directives that are used to configure queueing:

● altq on - enables queueing on an interface, defines which scheduler to use, and creates the root queue
● queue - defines the properties of a child queue

The syntax for the altq on directive is:

altq on interface scheduler bandwidth bw qlimit qlim \

http://www.openbsd.org/faq/pf/queueing.html (3 of 9) [31/10/2005 10:45:31]

http://www.icir.org/floyd/red.html
http://www.rfc-editor.org/rfc/rfc3168.txt
http://www.csl.sony.co.jp/person/kjc/kjc/software.html#ALTQ
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5&manpath=OpenBSD+3.7

PF: Packet Queueing and Prioritization

 tbrsize size queue { queue_list }

● interface - the network interface to activate queueing on.
● scheduler - the queueing scheduler to use. Possible values are cbq and priq. Only one scheduler may be active on an interface at a time.
● bw - the total amount of bandwidth available to the scheduler. This may be specified as an absolute value using the suffixes b, Kb, Mb, and Gb to

represent bits, kilobits, megabits, and gigabits per second, respectively or as a percentage of the interface bandwidth.
● qlim - the maximum number of packets to hold in the queue. This parameter is optional. The default is 50.
● size - the size of the token bucket regulator in bytes. If not specified, the size is set based on the interface bandwidth.
● queue_list - a list of child queues to create under the root queue.

For example:

altq on fxp0 cbq bandwidth 2Mb queue { std, ssh, ftp }

This enables CBQ on the fxp0 interface. The total bandwidth available is set to 2Mbps. Three child queues are defined: std, ssh, and ftp.

The syntax for the queue directive is:

queue name [on interface] bandwidth bw [priority pri] [qlimit qlim] \
 scheduler (sched_options) { queue_list }

● name - the name of the queue. This must match the name of one of the queues defined in the altq on directive's queue_list. For cbq it can also
match the name of a queue in a previous queue directive's queue_list. Queue names must be no longer than 15 characters.

● interface - the network interface that the queue is valid on. This value is optional, and when not specified, will make the queue valid on all
interfaces.

● bw - the total amount of bandwidth available to the queue. This may be specified as an absolute value using the suffixes b, Kb, Mb, and Gb to represent
bits, kilobits, megabits, and gigabits per second, respectively or as a percentage of the parent queue's bandwidth. This parameter is only applicable when
using the cbq scheduler. If not specified, the default is 100% of the parent queue's bandwith.

● pri - the priority of the queue. For cbq the priority range is 0 to 7 and for priq the range is 0 to 15. Priority 0 is the lowest priority. When not
specified, a default of 1 is used.

● qlim - the maximum number of packets to hold in the queue. When not specified, a default of 50 is used.
● scheduler - the scheduler being used, either cbq or priq. Must be the same as the root queue.
● sched_options - further options may be passed to the scheduler to control its behavior:

❍ default - defines a default queue where all packets not matching any other queue will be queued. Exactly one default queue is required.
❍ red - enables Random Early Detection (RED) on this queue.
❍ rio - enables RED with IN/OUT. In this mode, RED will maintain multiple average queue lengths and multiple threshold values, one for

each IP Quality of Service level.
❍ ecn - enables Explicit Congestion Notification (ECN) on this queue. Ecn implies red.
❍ borrow - the queue can borrow bandwidth from its parent. This can only be specified when using the cbq scheduler.

● queue_list - a list of child queues to create under this queue. A queue_list may only be defined when using the cbq scheduler.

Continuing with the example above:

queue std bandwidth 50% cbq(default)
queue ssh bandwidth 25% { ssh_login, ssh_bulk }
 queue ssh_login bandwidth 25% priority 4 cbq(ecn)
 queue ssh_bulk bandwidth 75% cbq(ecn)
queue ftp bandwidth 500Kb priority 3 cbq(borrow red)

Here the parameters of the previously defined child queues are set. The std queue is assigned a bandwidth of 50% of the root queue's bandwidth (or 1Mbps) and
is set as the default queue. The ssh queue is assigned 25% of the root queue's bandwidth (500kb) and also contains two child queues, ssh_login and
ssh_bulk. The ssh_login queue is given a higher priority than ssh_bulk and both have ECN enabled. The ftp queue is assigned a bandwidth of
500Kbps and given a priority of 3. It can also borrow bandwidth when extra is available and has RED enabled.

NOTE: Each child queue definition has its bandwidth specified. Without specifying the bandwidth, PF will give the queue 100% of the parent queue's
bandwidth. In this situation, that would cause an error when the rules are loaded since if there's a queue with 100% of the bandwidth, no other queue can be
defined at that level since there is no free bandwidth to allocate to it.

Assigning Traffic to a Queue

To assign traffic to a queue, the queue keyword is used in conjunction with PF's filter rules. For example, consider a set of filtering rules containing a line such

as:

pass out on fxp0 from any to any port 22

http://www.openbsd.org/faq/pf/queueing.html (4 of 9) [31/10/2005 10:45:31]

PF: Packet Queueing and Prioritization

Packets matching that rule can be assigned to a specific queue by using the queue keyword:

pass out on fxp0 from any to any port 22 queue ssh

When using the queue keyword with block directives, any resulting TCP RST or ICMP Unreachable packets are assigned to the specified queue.

Note that queue designation can happen on an interface other than the one defined in the altq on directive:

altq on fxp0 cbq bandwidth 2Mb queue { std, ftp }
queue std bandwidth 500Kb cbq(default)
queue ftp bandwidth 1.5Mb

pass in on dc0 from any to any port 21 queue ftp

Queueing is enabled on fxp0 but the designation takes place on dc0. If packets matching the pass rule exit from interface fxp0, they will be queued in the
ftp queue. This type of queueing can be very useful on routers.

Normally only one queue name is given with the queue keyword, but if a second name is specified that queue will be used for packets with a Type of Service

(ToS) of low-delay and for TCP ACK packets with no data payload. A good example of this is found when using SSH. SSH login sessions will set the ToS to low-

delay while SCP and SFTP sessions will not. PF can use this information to queue packets belonging to a login connection in a different queue than non-login
connections. This can be useful to prioritize login connection packets over file transfer packets.

pass out on fxp0 from any to any port 22 queue(ssh_bulk, ssh_login)

This assigns packets belonging to SSH login connections to the ssh_login queue and packets belonging to SCP and SFTP connections to the ssh_bulk
queue. SSH login connections will then have their packets processed ahead of SCP and SFTP connections because the ssh_login queue has a higher priority.

Assigning TCP ACK packets to a higher priority queue is useful on asymmetric connections, that is, connections that have different upload and download
bandwidths such as ADSL lines. With an ADSL line, if the upload channel is being maxed out and a download is started, the download will suffer because the
TCP ACK packets it needs to send will run into congestion when they try to pass through the upload channel. Testing has shown that to achieve the best results,
the bandwidth on the upload queue should be set to a value less than what the connection is capable of. For instance, if an ADSL line has a max upload of
640Kbps, setting the root queue's bandwidth to a value such as 600Kb should result in better performance. Trial and error will yield the best bandwidth
setting.

When using the queue keyword with rules that keep state such as:

pass in on fxp0 proto tcp from any to any port 22 flags S/SA \
 keep state queue ssh

PF will record the queue in the state table entry so that packets traveling back out fxp0 that match the stateful connection will end up in the ssh queue. Note
that even though the queue keyword is being used on a rule filtering incoming traffic, the goal is to specify a queue for the corresponding outgoing traffic; the
above rule does not queue incoming packets.

Example #1: Small, Home Network

 [Alice] [Charlie]
 | | ADSL
 ---+-----+-------+------ dc0 [OpenBSD] fxp0 -------- (Internet)
 |
 [Bob]

In this example, OpenBSD is being used on an Internet gateway for a small home network with three workstations. The gateway is performing packet filtering
and NAT duties. The Internet connection is via an ADSL line running at 2Mbps down and 640Kbps up.

The queueing policy for this network:

● Reserve 80Kbps of download bandwidth for Bob so he can play his online games without being lagged by Alice or Charlie's downloads. Allow Bob to
use more than 80Kbps when it's available.

● Interactive SSH and instant message traffic will have a higher priority than regular traffic.
● DNS queries and replies will have the second highest priority.

http://www.openbsd.org/faq/pf/queueing.html (5 of 9) [31/10/2005 10:45:31]

http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt

PF: Packet Queueing and Prioritization

● Outgoing TCP ACK packets will have a higher priority than all other outgoing traffic.

Below is the ruleset that meets this network policy. Note that only the pf.conf directives that apply directly to the above policy are present; nat, rdr, options,

etc., are not shown.

enable queueing on the external interface to control traffic going to
the Internet. use the priq scheduler to control only priorities. set
the bandwidth to 610Kbps to get the best performance out of the TCP
ACK queue.

altq on fxp0 priq bandwidth 610Kb queue { std_out, ssh_im_out, dns_out, \
 tcp_ack_out }

define the parameters for the child queues.
std_out - the standard queue. any filter rule below that does not
explicitly specify a queue will have its traffic added
to this queue.
ssh_im_out - interactive SSH and various instant message traffic.
dns_out - DNS queries.
tcp_ack_out - TCP ACK packets with no data payload.

queue std_out priq(default)
queue ssh_im_out priority 4 priq(red)
queue dns_out priority 5
queue tcp_ack_out priority 6

enable queueing on the internal interface to control traffic coming in
from the Internet. use the cbq scheduler to control bandwidth. max
bandwidth is 2Mbps.

altq on dc0 cbq bandwidth 2Mb queue { std_in, ssh_im_in, dns_in, bob_in }

define the parameters for the child queues.
std_in - the standard queue. any filter rule below that does not
explicitly specify a queue will have its traffic added
to this queue.
ssh_im_in - interactive SSH and various instant message traffic.
dns_in - DNS replies.
bob_in - bandwidth reserved for Bob's workstation. allow him to
borrow.

queue std_in bandwidth 1.6Mb cbq(default)
queue ssh_im_in bandwidth 200Kb priority 4
queue dns_in bandwidth 120Kb priority 5
queue bob_in bandwidth 80Kb cbq(borrow)

... in the filtering section of pf.conf ...

alice = "192.168.0.2"
bob = "192.168.0.3"
charlie = "192.168.0.4"
local_net = "192.168.0.0/24"
ssh_ports = "{ 22 2022 }"
im_ports = "{ 1863 5190 5222 }"

filter rules for fxp0 inbound
block in on fxp0 all

filter rules for fxp0 outbound
block out on fxp0 all
pass out on fxp0 inet proto tcp from (fxp0) to any flags S/SA \
 keep state queue(std_out, tcp_ack_out)
pass out on fxp0 inet proto { udp icmp } from (fxp0) to any keep state
pass out on fxp0 inet proto { tcp udp } from (fxp0) to any port domain \
 keep state queue dns_out
pass out on fxp0 inet proto tcp from (fxp0) to any port $ssh_ports \
 flags S/SA keep state queue(std_out, ssh_im_out)
pass out on fxp0 inet proto tcp from (fxp0) to any port $im_ports \
 flags S/SA keep state queue(ssh_im_out, tcp_ack_out)

filter rules for dc0 inbound
block in on dc0 all

http://www.openbsd.org/faq/pf/queueing.html (6 of 9) [31/10/2005 10:45:31]

PF: Packet Queueing and Prioritization

pass in on dc0 from $local_net

filter rules for dc0 outbound
block out on dc0 all
pass out on dc0 from any to $local_net
pass out on dc0 proto { tcp udp } from any port domain to $local_net \
 queue dns_in
pass out on dc0 proto tcp from any port $ssh_ports to $local_net \
 queue(std_in, ssh_im_in)
pass out on dc0 proto tcp from any port $im_ports to $local_net \
 queue ssh_im_in
pass out on dc0 from any to $bob queue bob_in

Example #2: Company Network

 (IT Dept) [Boss's PC]
 | | T1
 --+----+-----+---------- dc0 [OpenBSD] fxp0 -------- (Internet)
 | fxp1
 [COMP1] [WWW] /
 | /
 --+----------'

In this example, the OpenBSD host is acting as a firewall for a company network. The company runs a WWW server in the DMZ portion of their network where
customers upload their websites via FTP. The IT department has their own subnet connected to the main network, and the boss has a PC on his desk that's used
for email and surfing the web. The connection to the Internet is via a T1 line running at 1.5Mbps in both directions. All other network segments are using Fast
Ethernet (100Mbps).

The network administrator has decided on the following policy:

● Limit all traffic between the WWW server and the Internet to 500Kbps in each direction.
❍ Allot 250Kbps to HTTP traffic.
❍ Allot 250Kbps to "other" traffic (i.e., non-HTTP traffic)
❍ Allow either queue to borrow up to the full 500Kbps.
❍ Give HTTP traffic between the WWW server and the Internet a higher priority than other traffic between the WWW server and the Internet

(such as FTP uploads).
● Traffic between the WWW server and the internal network can use up to the full 100Mbps that the network offers.
● Reserve 500Kbps for the IT Dept network so they can download the latest software updates in a timely manner. They should be able to use more than

500Kbps when extra bandwidth is available.
● Give traffic between the boss's PC and the Internet a higher priority than other traffic to/from the Internet.

Below is the ruleset that meets this network policy. Note that only the pf.conf directives that apply directly to the above policy are present; nat, rdr, options,

etc., are not shown.

enable queueing on the external interface to queue packets going out
to the Internet. use the cbq scheduler so that the bandwidth use of
each queue can be controlled. the max outgoing bandwidth is 1.5Mbps.

altq on fxp0 cbq bandwidth 1.5Mb queue { std_ext, www_ext, boss_ext }

define the parameters for the child queues.
std_ext - the standard queue. also the default queue for
outgoing traffic on fxp0.
www_ext - container queue for WWW server queues. limit to
500Kbps.
www_ext_http - http traffic from the WWW server; higher priority.
www_ext_misc - all non-http traffic from the WWW server.
boss_ext - traffic coming from the boss's computer.

queue std_ext bandwidth 500Kb cbq(default borrow)
queue www_ext bandwidth 500Kb { www_ext_http, www_ext_misc }
 queue www_ext_http bandwidth 50% priority 3 cbq(red borrow)
 queue www_ext_misc bandwidth 50% priority 1 cbq(borrow)
queue boss_ext bandwidth 500Kb priority 3 cbq(borrow)

http://www.openbsd.org/faq/pf/queueing.html (7 of 9) [31/10/2005 10:45:31]

PF: Packet Queueing and Prioritization

enable queueing on the internal interface to control traffic coming
from the Internet or the DMZ. use the cbq scheduler to control the
bandwidth of each queue. bandwidth on this interface is set to the
maximum. traffic coming from the DMZ will be able to use all of this
bandwidth while traffic coming from the Internet will be limited to
1.0Mbps (because 0.5Mbps (500Kbps) is being allocated to fxp1).

altq on dc0 cbq bandwidth 100% queue { net_int, www_int }

define the parameters for the child queues.
net_int - container queue for traffic from the Internet. bandwidth
is 1.0Mbps.
std_int - the standard queue. also the default queue for outgoing
traffic on dc0.
it_int - traffic to the IT Dept network; reserve them 500Kbps.
boss_int - traffic to the boss's PC; assign a higher priority.
www_int - traffic from the WWW server in the DMZ; full speed.

queue net_int bandwidth 1.0Mb { std_int, it_int, boss_int }
 queue std_int bandwidth 250Kb cbq(default borrow)
 queue it_int bandwidth 500Kb cbq(borrow)
 queue boss_int bandwidth 250Kb priority 3 cbq(borrow)
queue www_int bandwidth 99Mb cbq(red borrow)

enable queueing on the DMZ interface to control traffic destined for
the WWW server. cbq will be used on this interface since detailed
control of bandwidth is necessary. bandwidth on this interface is set
to the maximum. traffic from the internal network will be able to use
all of this bandwidth while traffic from the Internet will be limited
to 500Kbps.

altq on fxp1 cbq bandwidth 100% queue { internal_dmz, net_dmz }

define the parameters for the child queues.
internal_dmz - traffic from the internal network.
net_dmz - container queue for traffic from the Internet.
net_dmz_http - http traffic; higher priority.
net_dmz_misc - all non-http traffic. this is also the default queue.

queue internal_dmz bandwidth 99Mb cbq(borrow)
queue net_dmz bandwidth 500Kb { net_dmz_http, net_dmz_misc }
 queue net_dmz_http bandwidth 50% priority 3 cbq(red borrow)
 queue net_dmz_misc bandwidth 50% priority 1 cbq(default borrow)

... in the filtering section of pf.conf ...

main_net = "192.168.0.0/24"
it_net = "192.168.1.0/24"
int_nets = "{ 192.168.0.0/24, 192.168.1.0/24 }"
dmz_net = "10.0.0.0/24"

boss = "192.168.0.200"
wwwserv = "10.0.0.100"

default deny
block on { fxp0, fxp1, dc0 } all

filter rules for fxp0 inbound
pass in on fxp0 proto tcp from any to $wwwserv port { 21, \
 > 49151 } flags S/SA keep state queue www_ext_misc
pass in on fxp0 proto tcp from any to $wwwserv port 80 \
 flags S/SA keep state queue www_ext_http

filter rules for fxp0 outbound
pass out on fxp0 from $int_nets to any keep state
pass out on fxp0 from $boss to any keep state queue boss_ext

filter rules for dc0 inbound
pass in on dc0 from $int_nets to any keep state
pass in on dc0 from $it_net to any queue it_int
pass in on dc0 from $boss to any queue boss_int
pass in on dc0 proto tcp from $int_nets to $wwwserv port { 21, 80, \
 > 49151 } flags S/SA keep state queue www_int

filter rules for dc0 outbound

http://www.openbsd.org/faq/pf/queueing.html (8 of 9) [31/10/2005 10:45:31]

PF: Packet Queueing and Prioritization

pass out on dc0 from dc0 to $int_nets

filter rules for fxp1 inbound
pass in on fxp1 proto { tcp, udp } from $wwwserv to any port 53 \
 keep state

filter rules for fxp1 outbound
pass out on fxp1 proto tcp from any to $wwwserv port { 21, \
 > 49151 } flags S/SA keep state queue net_dmz_misc
pass out on fxp1 proto tcp from any to $wwwserv port 80 \
 flags S/SA keep state queue net_dmz_http
pass out on fxp1 proto tcp from $int_nets to $wwwserv port { 80, \
 21, > 49151 } flags S/SA keep state queue internal_dmz

[Previous: Anchors] [Contents] [Next: Address Pools and Load Balancing]

 www@openbsd.org

$OpenBSD: queueing.html,v 1.27 2005/05/20 00:12:02 joel Exp $

http://www.openbsd.org/faq/pf/queueing.html (9 of 9) [31/10/2005 10:45:31]

mailto:www@openbsd.org

PF: Address Pools and Load Balancing

[Previous: Packet Queueing and Prioritization] [Contents] [Next: Packet Tagging]

PF: Address Pools and Load Balancing

Table of Contents

● Introduction

● NAT Address Pool

● Load Balancing Incoming Connections

● Load Balancing Outgoing Traffic

❍ Ruleset Example

Introduction

An address pool is a supply of two or more addresses whose use is shared among a group of users. An address pool can be specified as the redirection address in
rdr rules, as the translation address in nat rules, and as the target address in route-to, reply-to, and dup-to filter options.

There are four methods for using an address pool:

● bitmask - grafts the network portion of the pool address over top of the address that is being modified (source address for nat rules, destination
address for rdr rules). Example: if the address pool is 192.0.2.1/24 and the address being modified is 10.0.0.50, then the resulting address will be
192.0.2.50. If the address pool is 192.0.2.1/25 and the address being modified is 10.0.0.130, then the resulting address will be 192.0.2.2.

● random - randomly selects an address from the pool.
● source-hash - uses a hash of the source address to determine which address to use from the pool. This method ensures that a given source address is

always mapped to the same pool address. The key that is fed to the hashing algorithm can optionally be specified after the source-hash keyword in
hex format or as a string. By default, pfctl(8) will generate a random key every time the ruleset is loaded.

● round-robin - loops through the address pool in sequence. This is the default method and also the only method allowed when the address pool is
specified using a table.

Except for the round-robin method, the address pool must be expressed as a CIDR (Classless Inter-Domain Routing) network block. The round-robin

method will accept multiple individual addresses using a list or table.

The sticky-address option can be used with the random and round-robin pool types to ensure that a particular source address is always mapped to the
same redirection address.

NAT Address Pool

An address pool can be used as the translation address in nat rules. Connections will have their source address translated to an address from the pool based on

the method chosen. This can be useful in situations where PF is performing NAT for a very large network. Since the number of NATed connections per
translation address is limited, adding additional translation addresses will allow the NAT gateway to scale to serve a larger number of users.

In this example a pool of two addresses is being used to translate outgoing packets. For each outgoing connection PF will rotate through the addresses in a round-
robin manner.

nat on $ext_if inet from any to any -> { 192.0.2.5, 192.0.2.10 }

One drawback with this method is that successive connections from the same internal address will not always be translated to the same translation address. This
can cause interference, for example, when browsing websites that track user logins based on IP address. An alternate approach is to use the source-hash
method so that each internal address is always translated to the same translation address. To do this, the address pool must be a CIDR network block.

http://www.openbsd.org/faq/pf/pools.html (1 of 3) [31/10/2005 10:45:33]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+3.7
http://public.pacbell.net/dedicated/cidr.html
http://public.pacbell.net/dedicated/cidr.html

PF: Address Pools and Load Balancing

nat on $ext_if inet from any to any -> 192.0.2.4/31 source-hash

This nat rule uses the address pool 192.0.2.4/31 (192.0.2.4 - 192.0.2.5) as the translation address for outgoing packets. Each internal address will always be
translated to the same translation address because of the source-hash keyword.

Load Balance Incoming Connections

Address pools can also be used to load balance incoming connections. For example, incoming web server connections can be distributed across a web server
farm:

web_servers = "{ 10.0.0.10, 10.0.0.11, 10.0.0.13 }"

rdr on $ext_if proto tcp from any to any port 80 -> $web_servers \
 round-robin sticky-address

Successive connections will be redirected to the web servers in a round-robin manner with connections from the same source being sent to the same web server.
This "sticky connection" will exist as long as there are states that refer to this connection. Once the states expire, so will the sticky connection. Further
connections from that host will be redirected to the next web server in the round robin.

Load Balance Outgoing Traffic

Address pools can be used in combination with the route-to filter option to load balance two or more Internet connections when a proper multi-path routing
protocol (like BGP4) is unavailable. By using route-to with a round-robin address pool, outbound connections can be evenly distributed among multiple

outbound paths.

One additional piece of information that's needed to do this is the IP address of the adjacent router on each Internet connection. This is fed to the route-to
option to control the destination of outgoing packets.

The following example balances outgoing traffic across two Internet connections:

lan_net = "192.168.0.0/24"
int_if = "dc0"
ext_if1 = "fxp0"
ext_if2 = "fxp1"
ext_gw1 = "68.146.224.1"
ext_gw2 = "142.59.76.1"

pass in on $int_if route-to \
 { ($ext_if1 $ext_gw1), ($ext_if2 $ext_gw2) } round-robin \
 from $lan_net to any keep state

The route-to option is used on traffic coming in on the internal interface to specify the outgoing network interfaces that traffic will be balanced across along
with their respective gateways. Note that the route-to option must be present on each filter rule that traffic is to be balanced for. Return packets will be routed
back to the same external interface that they exited (this is done by the ISPs) and will be routed back to the internal network normally.

To ensure that packets with a source address belonging to $ext_if1 are always routed to $ext_gw1 (and similarly for $ext_if2 and $ext_gw2), the
following two lines should be included in the ruleset:

pass out on $ext_if1 route-to ($ext_if2 $ext_gw2) from $ext_if2 \
 to any
pass out on $ext_if2 route-to ($ext_if1 $ext_gw1) from $ext_if1 \
 to any

Finally, NAT can also be used on each outgoing interface:

nat on $ext_if1 from $lan_net to any -> ($ext_if1)
nat on $ext_if2 from $lan_net to any -> ($ext_if2)

A complete example that load balances outgoing traffic might look something like this:

http://www.openbsd.org/faq/pf/pools.html (2 of 3) [31/10/2005 10:45:33]

http://www.rfc-editor.org/rfc/rfc1771.txt

PF: Address Pools and Load Balancing

lan_net = "192.168.0.0/24"
int_if = "dc0"
ext_if1 = "fxp0"
ext_if2 = "fxp1"
ext_gw1 = "68.146.224.1"
ext_gw2 = "142.59.76.1"

nat outgoing connections on each internet interface
nat on $ext_if1 from $lan_net to any -> ($ext_if1)
nat on $ext_if2 from $lan_net to any -> ($ext_if2)

default deny
block in from any to any
block out from any to any

pass all outgoing packets on internal interface
pass out on $int_if from any to $lan_net
pass in quick any packets destined for the gateway itself
pass in quick on $int_if from $lan_net to $int_if
load balance outgoing tcp traffic from internal network.
pass in on $int_if route-to \
 { ($ext_if1 $ext_gw1), ($ext_if2 $ext_gw2) } round-robin \
 proto tcp from $lan_net to any flags S/SA modulate state
load balance outgoing udp and icmp traffic from internal network
pass in on $int_if route-to \
 { ($ext_if1 $ext_gw1), ($ext_if2 $ext_gw2) } round-robin \
 proto { udp, icmp } from $lan_net to any keep state

general "pass out" rules for external interfaces
pass out on $ext_if1 proto tcp from any to any flags S/SA modulate state
pass out on $ext_if1 proto { udp, icmp } from any to any keep state
pass out on $ext_if2 proto tcp from any to any flags S/SA modulate state
pass out on $ext_if2 proto { udp, icmp } from any to any keep state

route packets from any IPs on $ext_if1 to $ext_gw1 and the same for
$ext_if2 and $ext_gw2
pass out on $ext_if1 route-to ($ext_if2 $ext_gw2) from $ext_if2 to any
pass out on $ext_if2 route-to ($ext_if1 $ext_gw1) from $ext_if1 to any

[Previous: Packet Queueing and Prioritization] [Contents] [Next: Packet Tagging]

 www@openbsd.org

$OpenBSD: pools.html,v 1.15 2005/05/20 00:12:02 joel Exp $

http://www.openbsd.org/faq/pf/pools.html (3 of 3) [31/10/2005 10:45:33]

mailto:www@openbsd.org

PF: Packet Tagging (Policy Filtering)

[Previous: Address Pools and Load Balancing] [Contents] [Next: Logging]

PF: Packet Tagging (Policy Filtering)

Table of Contents

● Introduction

● Assigning Tags to Packets

● Checking for Applied Tags

● Policy Filtering

● Tagging Ethernet Frames

Introduction

Packet tagging is a way of marking packets with an internal identifier that can later be used in filter and translation rule criteria. With tagging, it's possible to do
such things as create "trusts" between interfaces and determine if packets have been processed by translation rules. It's also possible to move away from rule-
based filtering and to start doing policy-based filtering.

Assigning Tags to Packets

To add a tag to a packet, use the tag keyword:

pass in on $int_if all tag INTERNAL_NET keep state

The tag INTERNAL_NET will be added to any packet which matches the above rule. Note the use of keep state; keep state (or modulate
state/synproxy state) must be used in pass rules that tag packets.

A tag can also be assigned using a macro. For instance:

name = "INTERNAL_NET"
pass in on $int_if all tag $name keep state

There are a set of predefined macros which can also be used.

● $if - The interface
● $srcaddr - Source IP address
● $dstaddr - Destination IP address
● $srcport - The source port specification
● $dstport - The destination port specification
● $proto - The protocol
● $nr - The rule number

These macros are expanded at ruleset load time and NOT at runtime.

Tagging follows these rules:

● Tags are "sticky". Once a tag is applied to a packet by a matching rule it is never removed. It can, however, be replaced with a different tag.
● Because of a tag's "stickiness", a packet can have a tag even if the last matching rule doesn't use the tag keyword.
● A packet is only ever assigned a maximum of one tag at a time.

http://www.openbsd.org/faq/pf/tagging.html (1 of 3) [31/10/2005 10:45:37]

http://www.openbsd.org/index.html

PF: Packet Tagging (Policy Filtering)

● Tags are internal identifiers. Tags are not sent out over the wire.

Take the following ruleset as an example.

(1) pass in on $int_if tag INT_NET keep state
(2) pass in quick on $int_if proto tcp to port 80 tag \
 INT_NET_HTTP keep state
(3) pass in quick on $int_if from 192.168.1.5 keep state

● Packets coming in on $int_if will be assigned a tag of INT_NET by rule #1.
● TCP packets coming in on $int_if and destined for port 80 will first be assigned a tag of INT_NET by rule #1. That tag will then be replaced with

the INT_NET_HTTP tag by rule #2.
● Packets coming in on $int_if from 192.168.1.5 will be passed by rule #3 since it's the last matching rule. However, those packets will be tagged with

the INT_NET_HTTP tag if they were destined for TCP port 80, otherwise they'll be tagged with the INT_NET tag.

In addition to applying tags with filter rules, the nat, rdr, and binat translation rules can also apply tags to packets by using the tag keyword.

Checking for Applied Tags

To check for previously applied tags, use the tagged keyword:

pass out on $ext_if tagged INT_NET keep state

Outgoing packets on $ext_if must be tagged with the INT_NET tag in order to match the above rule. Inverse matching can also be done by using the !
operator:

pass out on $ext_if tagged ! WIFI_NET keep state

Translation rules (nat/rdr/binat) can also use the tagged keyword to match packets.

Policy Filtering

Policy filtering takes a different approach to writing a filter ruleset. A policy is defined which sets the rules for what types of traffic is passed and what types are
blocked. Packets are then classified into the policy based on the traditional criteria of source/destination IP address/port, protocol, etc. For example, examine the
following firewall policy:

● Traffic from the internal LAN to the Internet is permitted (LAN_INET) and must be translated (LAN_INET_NAT)
● Traffic from the internal LAN to the DMZ is permitted (LAN_DMZ)
● Traffic from the Internet to servers in the DMZ is permitted (INET_DMZ)
● Traffic from the Internet that's being redirected to spamd(8) is permitted (SPAMD)

● All other traffic is blocked

Note how the policy covers all traffic that will be passing through the firewall. The item in parenthesis indicates the tag that will be used for that policy item.

Filter and translation rules now need to be written to classify packets into the policy.

rdr on $ext_if proto tcp from <spamd> to port smtp \
 tag SPAMD -> 127.0.0.1 port 8025
nat on $ext_if tag LAN_INET_NAT tagged LAN_INET -> ($ext_if)

block all
pass in on $int_if from $int_net tag LAN_INET keep state
pass in on $int_if from $int_net to $dmz_net tag LAN_DMZ keep state
pass in on $ext_if proto tcp to $www_server port 80 tag INET_DMZ keep state

Now the rules that define the policy are set.

pass in quick on $ext_if tagged SPAMD keep state
pass out quick on $ext_if tagged LAN_INET_NAT keep state
pass out quick on $dmz_if tagged LAN_DMZ keep state
pass out quick on $dmz_if tagged INET_DMZ keep state

http://www.openbsd.org/faq/pf/tagging.html (2 of 3) [31/10/2005 10:45:37]

http://www.openbsd.org/cgi-bin/man.cgi?query=spamd&sektion=8&manpath=OpenBSD+3.7

PF: Packet Tagging (Policy Filtering)

Now that the whole ruleset is setup, changes are a matter of modifying the classification rules. For example, if a POP3/SMTP server is added to the DMZ, it will
be necessary to add classification rules for POP3 and SMTP traffic, like so:

mail_server = "192.168.0.10"
...
pass in on $ext_if proto tcp to $mail_server port { smtp, pop3 } \
 tag INET_DMZ keep state

Email traffic will now be passed as part of the INET_DMZ policy entry.

The complete ruleset:

macros
int_if = "dc0"
dmz_if = "dc1"
ext_if = "ep0"
int_net = "10.0.0.0/24"
dmz_net = "192.168.0.0/24"
www_server = "192.168.0.5"
mail_server = "192.168.0.10"

table <spamd> persist file "/etc/spammers"

classification -- classify packets based on the defined firewall
policy.
rdr on $ext_if proto tcp from <spamd> to port smtp \
 tag SPAMD -> 127.0.0.1 port 8025
nat on $ext_if tag LAN_INET_NAT tagged LAN_INET -> ($ext_if)

block all
pass in on $int_if from $int_net tag LAN_INET keep state
pass in on $int_if from $int_net to $dmz_net tag LAN_DMZ keep state
pass in on $ext_if proto tcp to $www_server port 80 tag INET_DMZ keep state
pass in on $ext_if proto tcp to $mail_server port { smtp, pop3 } \
 tag INET_DMZ keep state

policy enforcement -- pass/block based on the defined firewall policy.
pass in quick on $ext_if tagged SPAMD keep state
pass out quick on $ext_if tagged LAN_INET_NAT keep state
pass out quick on $dmz_if tagged LAN_DMZ keep state
pass out quick on $dmz_if tagged INET_DMZ keep state

Tagging Ethernet Frames

Tagging can be performed at the Ethernet level if the machine doing the tagging/filtering is also acting as a bridge(4). By creating bridge(4) filter rules that use

the tag keyword, PF can be made to filter based on the source/destination MAC address. Bridge(4) rules are created using the brconfig(8) command. Example:

brconfig bridge0 rule pass in on fxp0 src 0:de:ad:be:ef:0 \
 tag USER1

And then in pf.conf:

pass in on fxp0 tagged USER1

[Previous: Address Pools and Load Balancing] [Contents] [Next: Logging]

 www@openbsd.org

$OpenBSD: tagging.html,v 1.8 2005/09/24 15:37:26 joel Exp $

http://www.openbsd.org/faq/pf/tagging.html (3 of 3) [31/10/2005 10:45:37]

http://www.openbsd.org/cgi-bin/man.cgi?query=bridge&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=brconfig&sektion=8&manpath=OpenBSD+3.7
mailto:www@openbsd.org

PF: Logging

[Previous: Packet Tagging] [Contents] [Next: Performance]

PF: Logging

Table of Contents

● Introduction

● Reading a Log File

● Filtering Log Output

● Packet Logging Through Syslog

Introduction

Packet logging in PF is done by pflogd(8) which listens on the pflog0 interface and writes packets to a log file (normally

/var/log/pflog) in tcpdump(8) binary format. Filter rules that specify the log or log-all keyword are logged in this manner.

Reading a Log File

The log file written by pflogd is in binary format and cannot be read using a text editor. Tcpdump must be used to view the log.

To view the log file:

tcpdump -n -e -ttt -r /var/log/pflog

Note that using tcpdump(8) to watch the pflog file does not give a real-time display. A real-time display of logged packets is
achieved by using the pflog0 interface:

tcpdump -n -e -ttt -i pflog0

NOTE: When examining the logs, special care should be taken with tcpdump's verbose protocol decoding (activated via the -v
command line option). Tcpdump's protocol decoders do not have a perfect security history. At least in theory, a delayed attack
could be possible via the partial packet payloads recorded by the logging device. It is recommended practice to move the log files
off of the firewall machine before examining them in this way.

Additional care should also be taken to secure access to the logs. By default, pflogd will record 96 bytes of the packet in the log
file. Access to the logs could provide partial access to sensitive packet payloads (like telnet(1) or ftp(1) usernames and passwords).

http://www.openbsd.org/faq/pf/logging.html (1 of 4) [31/10/2005 10:45:39]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pflogd&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=pflog&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=tcpdump&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=telnet&sektion=1&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=ftp&sektion=1&manpath=OpenBSD+3.7

PF: Logging

Filtering Log Output

Because pflogd logs in tcpdump binary format, the full range of tcpdump features can be used when reviewing the logs. For
example, to only see packets that match a certain port:

tcpdump -n -e -ttt -r /var/log/pflog port 80

This can be further refined by limiting the display of packets to a certain host and port combination:

tcpdump -n -e -ttt -r /var/log/pflog port 80 and host 192.168.1.3

The same idea can be applied when reading from the pflog0 interface:

tcpdump -n -e -ttt -i pflog0 host 192.168.4.2

Note that this has no impact on which packets are logged to the pflogd log file; the above commands only display packets as they
are being logged.

In addition to using the standard tcpdump(8) filter rules, OpenBSD's tcpdump filter language has been extended for reading pflogd

output:

● ip - address family is IPv4.
● ip6 - address family is IPv6.
● on int - packet passed through the interface int.
● ifname int - same as on int.
● ruleset name - the ruleset/anchor that the packet was matched in.

● rulenum num - the filter rule that the packet matched was rule number num.
● action act - the action taken on the packet. Possible actions are pass and block.
● reason res - the reason that action was taken. Possible reasons are match, bad-offset, fragment, short,
normalize, memory, bad-timestamp, congestion, ip-option, proto-cksum, state-mismatch,
state-insert, state-limit, src-limit, and synproxy.

● inbound - packet was inbound.
● outbound - packet was outbound.

Example:

tcpdump -n -e -ttt -i pflog0 inbound and action block and on wi0

This display the log, in real-time, of inbound packets that were blocked on the wi0 interface.

Packet Logging Through Syslog

In many situations it is desirable to have the firewall logs available in ASCII format and/or to send them to a remote logging
server. All this can be accomplished with two small shell scripts, some minor changes of the OpenBSD configuration files, and
syslogd(8), the logging daemon. Syslogd logs in ASCII and is also able to log to a remote logging server.

First we have to create a user, pflogger, with a /sbin/nologin shell. The easiest way to create this user is with adduser(8).

After creating the user pflogger, create the following two scripts:

http://www.openbsd.org/faq/pf/logging.html (2 of 4) [31/10/2005 10:45:39]

http://www.openbsd.org/cgi-bin/man.cgi?query=tcpdump&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=syslogd&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=adduser&sektion=8&manpath=OpenBSD+3.7

PF: Logging

/etc/pflogrotate

 FILE=/home/pflogger/pflog5min.$(date "+%Y%m%d%H%M")
 kill -ALRM $(cat /var/run/pflogd.pid)
 if [$(ls -l /var/log/pflog | cut -d " " -f 8) -gt 24]; then
 mv /var/log/pflog $FILE
 chown pflogger $FILE
 kill -HUP $(cat /var/run/pflogd.pid)
 fi

/home/pflogger/pfl2sysl

 for logfile in /home/pflogger/pflog5min* ; do
 if [-s "$logfile"]; then
 tcpdump -n -e -ttt -r $logfile | logger -t pf -p local0.info
 rm $logfile
 fi
 done

Edit root's cron job:

crontab -u root -e

Add the following two lines:

rotate pf log file every 5 minutes
0-59/5 * * * * /bin/sh /etc/pflogrotate

Create a cron job for user pflogger:

crontab -u pflogger -e

Add the following two lines:

feed rotated pflog file(s) to syslog
0-59/5 * * * * /bin/sh /home/pflogger/pfl2sysl

Add the following line to /etc/syslog.conf:

local0.info /var/log/pflog.txt

If you also want to log to a remote log server, add the line:

local0.info @syslogger

Make sure host syslogger has been defined in the hosts(5) file.

Create the file /var/log/pflog.txt to allow syslog to log to that file.

http://www.openbsd.org/faq/pf/logging.html (3 of 4) [31/10/2005 10:45:39]

http://www.openbsd.org/cgi-bin/man.cgi?query=hosts&sektion=5&manpath=OpenBSD+3.7

PF: Logging

touch /var/log/pflog.txt

Make syslogd notice the changes by restarting it:

kill -HUP $(cat /var/run/syslog.pid)

All logged packets are now sent to /var/log/pflog.txt. If the second line is added they are sent to the remote logging host
syslogger as well.

The script /etc/pflogrotate now processes and then deletes /var/log/pflog so rotation of pflog by newsyslog(8) is

no longer necessary and should be disabled. However, /var/log/pflog.txt replaces /var/log/pflog and rotation of it
should be activated. Change /etc/newsyslog.conf as follows:

 #/var/log/pflog 600 3 250 * ZB /var/run/pflogd.pid
 /var/log/pflog.txt 600 7 * 24

PF will now log in ASCII to /var/log/pflog.txt. If so configured in /etc/syslog.conf, it will also log to a remote
server. The logging is not immediate but can take up to about 5-6 minutes (the cron job interval) before the logged packets appear
in the file.

[Previous: Packet Tagging] [Contents] [Next: Performance]

 www@openbsd.org

$OpenBSD: logging.html,v 1.21 2005/06/04 18:16:47 joel Exp $

http://www.openbsd.org/faq/pf/logging.html (4 of 4) [31/10/2005 10:45:39]

http://www.openbsd.org/cgi-bin/man.cgi?query=newsyslog&sektion=8&manpath=OpenBSD+3.7
mailto:www@openbsd.org

PF: Performance

[Previous: Logging] [Contents] [Next: Issues with FTP]

PF: Performance

"How much bandwidth can PF handle?"
"How much computer do I need to handle my Internet connection?"

There are no easy answers to those questions. For some applications, a 486/66 with a pair of good ISA NICs could filter and NAT
close to 5Mbps, but for other applications a much faster machine with much more efficient PCI NICs might end up being
insufficient. The real question is not the number of bits per second but rather the number of packets per second and the complexity
of the ruleset.

PF performance is determined by several variables:

● Number of packets per second. Almost the same amount of processing needs to be done on a packet with 1500 byte
payload as for a packet with a one byte payload. The number of packets per second determines the number of times the
state table and, in case of no match there, filter rules have to be evaluated every second, determining the effective
demand on the system.

● Performance of your system bus. The ISA bus has a maximum bandwidth of 8MB/sec, and when the processor is
accessing it, it has to slow itself to the effective speed of a 80286 running at 8MHz, no matter how fast the processor
really is. The PCI bus has a much greater effective bandwidth, and has less impact on the processor.

● Efficiency of your network card. Some network adapters are just more efficient than others. Realtek 8139 (rl(4)) based

cards tend to be relatively poor performers while Intel 21143 (dc(4)) based cards tend to perform very well. For

maximum performance, consider using gigabit Ethernet cards, even if not connecting to gigabit networks, as they have
much more advanced buffering.

● Complexity and design of your ruleset. The more complex your ruleset, the slower it is. The more packets that are
filtered by keep state and quick rules, the better the performance. The more lines that have to be evaluated for
each packet, the lower the performance.

● Barely worth mentioning: CPU and RAM. As PF is a kernel-based process, it will not use swap space. So, if you have
enough RAM, it runs, if not, it panics due to pool(9) exhaustion. Huge amounts of RAM are not needed -- 32MB should

be plenty for close to 30,000 states, which is a lot of states for a small office or home application. Most users will find a
"recycled" computer more than enough for a PF system -- a 300MHz system will move a very large number of packets
rapidly, at least if backed up with good NICs and a good ruleset.

People often ask for PF benchmarks. The only benchmark that counts is your system performance in your environment. A
benchmark that doesn't replicate your environment will not properly help you plan your firewall system. The best course of action
is to benchmark PF for yourself under the same, or as close as possible to, network conditions that the actual firewall would
experience running on the same hardware the firewall would use.

PF is used in some very large, high-traffic applications, and the developers are "power users" of PF. Odds are, it will do very well
for you.

[Previous: Logging] [Contents] [Next: Issues with FTP]

http://www.openbsd.org/faq/pf/perf.html (1 of 2) [31/10/2005 10:45:41]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=rl&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=dc&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=pool&sektion=9&manpath=OpenBSD+3.7

PF: Performance

 www@openbsd.org

$OpenBSD: perf.html,v 1.17 2005/05/20 00:12:02 joel Exp $

http://www.openbsd.org/faq/pf/perf.html (2 of 2) [31/10/2005 10:45:41]

mailto:www@openbsd.org

PF: Issues with FTP

[Previous: Performance] [Contents] [Next: Authpf: User Shell for Authenticating Gateways]

PF: Issues with FTP

Table of Contents

● FTP Modes

● FTP Client Behind the Firewall

● PF "Self-Protecting" an FTP Server

● FTP Server Protected by an External PF Firewall Running NAT

● More Information on FTP

FTP Modes

FTP is a protocol that dates back to when the Internet was a small, friendly collection of computers and everyone knew everyone
else. At that time the need for filtering or tight security wasn't necessary. FTP wasn't designed for filtering, for passing through
firewalls, or for working with NAT.

You can use FTP in one of two ways: passive or active. Generally, the choice of active or passive is made to determine who has
the problem with firewalling. Realistically, you will have to support both to have happy users.

With active FTP, when a user connects to a remote FTP server and requests information or a file, the FTP server makes a new
connection back to the client to transfer the requested data. This is called the data connection. To start, the FTP client chooses a
random port to receive the data connection on. The client sends the port number it chose to the FTP server and then listens for an
incoming connection on that port. The FTP server then initiates a connection to the client's address at the chosen port and transfers
the data. This is a problem for users attempting to gain access to FTP servers from behind a NAT gateway. Because of how NAT
works, the FTP server initiates the data connection by connecting to the external address of the NAT gateway on the chosen port.
The NAT machine will receive this, but because it has no mapping for the packet in its state table, it will drop the packet and won't
deliver it to the client.

With passive mode FTP (the default mode with OpenBSD's ftp(1) client), the client requests that the server pick a random port to

listen on for the data connection. The server informs the client of the port it has chosen, and the client connects to this port to
transfer the data. Unfortunately, this is not always possible or desirable because of the possibility of a firewall in front of the FTP
server blocking the incoming data connection. OpenBSD's ftp(1) uses passive mode by default; to force active mode FTP, use the -
A flag to ftp, or set passive mode to "off" by issuing the command "passive off" at the "ftp>" prompt.

FTP Client Behind the Firewall

As indicated earlier, FTP does not go through NAT and firewalls very well.

http://www.openbsd.org/faq/pf/ftp.html (1 of 3) [31/10/2005 10:45:42]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=ftp&sektion=1&manpath=OpenBSD+3.7

PF: Issues with FTP

Packet Filter provides a solution for this situation by redirecting FTP traffic through an FTP proxy server. This process acts to
"guide" your FTP traffic through the NAT gateway/firewall. The FTP proxy used by OpenBSD and PF is ftp-proxy(8). To activate

it, put something like this in the NAT section of pf.conf:

rdr on $int_if proto tcp from any to any port 21 -> 127.0.0.1 \
 port 8021

The explanation of this line is: "Traffic on the internal interface is redirected to the proxy server running on this machine which is
listening at port 8021".

Hopefully it is apparent the proxy server has to be started and running on the OpenBSD box. This is done by inserting the
following line in /etc/inetd.conf:

127.0.0.1:8021 stream tcp nowait root /usr/libexec/ftp-proxy \
 ftp-proxy -n

Note that the -n switch is only necessary if the OpenBSD machine is performing NAT. Now send a 'HUP' signal to inetd(8) to

have it reread its configuration file. One way to send the 'HUP' signal is with the command:

kill -HUP `cat /var/run/inetd.pid`

You will note that ftp-proxy is listening on port 8021, the same port the above rdr statement is sending FTP traffic to. The choice
of port 8021 is arbitrary, though 8021 is a good choice as it is not defined for any other application.

At this point only passive mode FTP connections will function. To enable active mode connections, the ftp-data connection that
the FTP server initiates must be passed in on the firewall. Unfortunately, the port that this connection comes in on can't be known
beforehand, only the range that it falls within. What is known, however, is that the connection will be initiated from port 20 (ftp-
data port) and that ftp-proxy will be accepting the connection (and then relaying data to the client). Since ftp-proxy runs as the user
proxy, the user keyword can be used in the filter rule.

pass in on $ext_if inet proto tcp from port 20 to ($ext_if) \
 user proxy flags S/SA keep state

Please note that ftp-proxy(8) is to help FTP clients behind a PF filter; it is not used to handle an FTP server behind a PF filter.

PF "Self-Protecting" an FTP Server

In this case, PF is running on the FTP server itself rather than a dedicated firewall computer. When servicing a passive FTP
connection, FTP will use a randomly chosen, high TCP port for incoming data. By default, OpenBSD's native FTP server ftpd(8)

uses the range 49152 to 65535. Obviously, these must be passed through the filter rules, along with port 21 (the FTP control port):

pass in on $ext_if proto tcp from any to any port 21 keep state
pass in on $ext_if proto tcp from any to any port > 49151 \
 keep state

Note that if you desire, you can tighten up that range of ports considerably. In the case of the OpenBSD ftpd(8) program, that is

done using the sysctl(8) variables net.inet.ip.porthifirst and net.inet.ip.porthilast.

FTP Server Protected by an External PF Firewall Running NAT

http://www.openbsd.org/faq/pf/ftp.html (2 of 3) [31/10/2005 10:45:42]

http://www.openbsd.org/cgi-bin/man.cgi?query=ftp-proxy&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=inetd&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=ftpd&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=ftpd&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=8&manpath=OpenBSD+3.7

PF: Issues with FTP

In this case, the firewall must redirect traffic to the FTP server in addition to not blocking the required ports. For the sake of
discussion, we will assume the FTP server in question is again the standard OpenBSD ftpd(8), using the default range of ports.

Here is an example subset of rules which would accomplish this:

ftp_server = "10.0.3.21"

rdr on $ext_if proto tcp from any to any port 21 -> $ftp_server \
 port 21
rdr on $ext_if proto tcp from any to any port 49152:65535 -> \
 $ftp_server port 49152:65535

in on $ext_if
pass in quick on $ext_if proto tcp from any to $ftp_server \
 port 21 keep state
pass in quick on $ext_if proto tcp from any to $ftp_server \
 port > 49151 keep state

out on $int_if
pass out quick on $int_if proto tcp from any to $ftp_server \
 port 21 keep state
pass out quick on $int_if proto tcp from any to $ftp_server \
 port > 49151 keep state

More Information on FTP

More information on filtering FTP and how FTP works in general can be found in this whitepaper:

● FTP Reviewed

[Previous: Performance] [Contents] [Next: Authpf: User Shell for Authenticating Gateways]

 www@openbsd.org

$OpenBSD: ftp.html,v 1.18 2005/05/20 00:12:02 joel Exp $

http://www.openbsd.org/faq/pf/ftp.html (3 of 3) [31/10/2005 10:45:42]

http://www.openbsd.org/cgi-bin/man.cgi?query=ftpd&sektion=8&manpath=OpenBSD+3.7
http://www.pintday.org/whitepapers/ftp-review.shtml
mailto:www@openbsd.org

PF: Authpf: User Shell for Authenticating Gateways

[Previous: Issues with FTP] [Contents] [Next: Firewall Redundancy with CARP and pfsync]

PF: Authpf: User Shell for Authenticating Gateways

Table of Contents

● Introduction

● Configuration

❍ Enabling Authpf

❍ Linking Authpf into the Main Ruleset

❍ Configuring Loaded Rules

❍ Access Control Lists

❍ Displaying a Login Message

❍ Assigning Authpf as a User's Shell

● Creating an authpf Login Class

● Seeing Who is Logged In

● Example

Introduction

Authpf(8) is a user shell for authenticating gateways. An authenticating gateway is just like a regular network gateway (a.k.a. a router) except that users must first

authenticate themselves to the gateway before it will allow traffic to pass through it. When a user's shell is set to /usr/sbin/authpf (i.e., instead of setting a
user's shell to ksh(1), csh(1), etc) and the user logs in using SSH, authpf will make the necessary changes to the active pf(4) ruleset so that the user's traffic is

passed through the filter and/or translated using Network Address Translation or redirection. Once the user logs out or their session is disconnected, authpf will
remove any rules loaded for the user and kill any stateful connections the user has open. Because of this, the ability of the user to pass traffic through the gateway
only exists while the user keeps their SSH session open.

Authpf loads a user's filter/NAT rules into a unique anchor point. The anchor is named by combining the user's UNIX username and the authpf process-id into the

format "username(PID)". Each users' anchor is stored within the authpf anchor which is in turn anchored to the main ruleset. The "fully qualified anchor
path" then becomes:

main_ruleset/authpf/username(PID)

The rules that authpf loads can be configured on a per-user or global basis.

Example uses of authpf include:

● Requiring users to authenticate before allowing Internet access.
● Granting certain users -- such as administrators -- access to restricted parts of the network.
● Allowing only known users to access the rest of the network or Internet from a wireless network segment.
● Allowing workers from home, on the road, etc., access to resources on the company network. Users outside the office can not only open access to the

company network, but can also be redirected to particular resources (e.g., their own desktop) based on the username they authenticate with.
● In a setting such as a library or other place with public Internet terminals, PF may be configured to allow limited Internet access to guest users. Authpf

can then be used to provide registered users with complete access.

Authpf logs the username and IP address of each user who authenticates successfully as well as the start and end times of their login session via syslogd(8). By

using this information, an administrator can determine who was logged in when and also make users accountable for their network traffic.

Configuration

http://www.openbsd.org/faq/pf/authpf.html (1 of 5) [31/10/2005 10:45:44]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=authpf&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=ksh&sektion=1&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=csh&sektion=1&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=syslogd&sektion=8&manpath=OpenBSD+3.7

PF: Authpf: User Shell for Authenticating Gateways

The basic steps needed to configure authpf are outlined here. For a complete description of authpf configuration, please refer to the authpf man page.

Enabling Authpf

Authpf will not run if the config file /etc/authpf/authpf.conf is not present. Even if the file is empty (zero size), it must still be present or authpf will
exit immediately after a user authenticates successfully.

The following configuration directives can be placed in authpf.conf:

● anchor=name - Use the specified anchor name instead of "authpf".

● table=name - Use the specified table name instead of "authpf_users".

Linking Authpf into the Main Ruleset

Authpf is linked into the main ruleset by using anchor rules:

nat-anchor "authpf/*"
rdr-anchor "authpf/*"
binat-anchor "authpf/*"
anchor "authpf/*"

Wherever the anchor rules are placed within the ruleset is where PF will branch off from the main ruleset to evaluate the authpf rules. It's not necessary for all
four anchor rules to be present; for example, if authpf hasn't been setup to load any nat rules, the nat-anchor rule can be omitted.

Configuring Loaded Rules

Authpf loads its rules from one of two files:

● /etc/authpf/users/$USER/authpf.rules
● /etc/authpf/authpf.rules

The first file contains rules that are only loaded when the user $USER (which is replaced with the user's username) logs in. The per-user rule configuration is used
when a specific user -- such as an administrator -- requires a set of rules that is different than the default set. The second file contains the default rules which are
loaded for any user that doesn't have their own authpf.rules file. If the user-specific file exists, it will override the default file. At least one of the files must
exist or authpf will not run.

Filter and translation rules have the same syntax as in any other PF ruleset with one exception: Authpf allows for the use of two predefined macros:

● $user_ip - the IP address of the logged in user
● $user_id - the username of the logged in user

It's recommended practice to use the $user_ip macro to only permit traffic through the gateway from the authenticated user's computer.

In addition to the $user_ip macro, authpf will make use of the authpf_users table (if it exists) for storing the IP addresses of all authenticated users. Be
sure to define the table before using it:

table <authpf_users> persist
pass in on $ext_if proto tcp from <authpf_users> \
 to port smtp flags S/SA keep state

This table should only be used in rules that are meant to apply to all authenticated users.

Access Control Lists

Users can be prevented from using authpf by creating a file in the /etc/authpf/banned/ directory and naming it after the username that is to be denied
access. The contents of the file will be displayed to the user before authpf disconnects them. This provides a handy way to notify the user of why they're
disallowed access and who to contact to have their access restored.

Conversely, it's also possible to allow only specific users access by placing usernames in the /etc/authpf/authpf.allow file. If the

http://www.openbsd.org/faq/pf/authpf.html (2 of 5) [31/10/2005 10:45:44]

http://www.openbsd.org/cgi-bin/man.cgi?query=authpf&sektion=8&manpath=OpenBSD+3.7

PF: Authpf: User Shell for Authenticating Gateways

/etc/authpf/authpf.allow file does not exist or "*" is entered into the file, then authpf will permit access to any user who successfully logs in via SSH
as long as they are not explicitly banned.

If authpf is unable to determine if a username is allowed or denied, it will print a brief message and then disconnect the user. An entry in
/etc/authpf/banned/ always overrides an entry in /etc/authpf/authpf.allow.

Displaying a Login Message

Whenever a user successfully authenticates to authpf, a greeting is printed that indicates that the user is authenticated.

Hello charlie. You are authenticated from host "64.59.56.140"

This message can be supplemented by putting a custom message in /etc/authpf/authpf.message. The contents of this file will be displayed after the
default welcome message.

Assigning Authpf as a User's Shell

In order for authpf to work it must be assigned as the user's login shell. When the user successfully authenticates to sshd(8), authpf will be executed as the user's

shell. It will then check if the user is allowed to use authpf, load the rules from the appropriate file, etc.

There are a couple ways of assigning authpf as a user's shell:

1. Manually for each user using chsh(1), vipw(8), useradd(8), usermod(8), etc.

2. By assigning users to a login class and changing the class's shell option in /etc/login.conf.

Creating an authpf Login Class

When using authpf on a system that has regular user accounts and authpf user accounts, it can be beneficial to create a separate login class for the authpf users.
This allows for certain changes to those accounts to be made on a global basis and also allows different policies to be placed on regular accounts and authpf
accounts. Some examples of what policies can be set:

● shell - Specify a user's login shell. This can be used to force a user's shell to authpf regardless of the entry in the passwd(5) database.

● welcome - Specify which motd(5) file to display when a user logs in. This is useful for displaying messages that are relevant only to authpf users.

Login classes are created in the login.conf(5) file. An example login class for authpf users:

authpf:\
 :welcome=/etc/motd.authpf:\
 :shell=/usr/sbin/authpf:\
 :tc=default:

Users are assigned to a login class by editing the class field of the user's passwd(5) database entry. One way to do this is with the chsh(1) command.

Seeing Who is Logged In

Once a user has successfully logged in and authpf has adjusted the PF rules, authpf changes its process title to indicate the username and IP address of the logged
in user:

 # ps -ax | grep authpf
 23664 p0 Is+ 0:00.11 -authpf: charlie@192.168.1.3 (authpf)

Here the user charlie is logged in from the machine 192.168.1.3. By sending a SIGTERM signal to the authpf process, the user can be forcefully logged out.
Authpf will also remove any rules loaded for the user and kill any stateful connections the user has open.

 # kill -TERM 23664

Example

http://www.openbsd.org/faq/pf/authpf.html (3 of 5) [31/10/2005 10:45:44]

http://www.openbsd.org/cgi-bin/man.cgi?query=sshd&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=chsh&sektion=1&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=vipw&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=useradd&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=usermod&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=login.conf&sektion=5&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=passwd&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=motd&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=login.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=chsh&sektion=1

PF: Authpf: User Shell for Authenticating Gateways

Authpf is being used on an OpenBSD gateway to authenticate users on a wireless network which is part of a larger campus network. Once a user has
authenticated, assuming they're not on the banned list, they will be permitted to SSH out and to browse the web (including secure web sites) in addition to
accessing either of the campus DNS servers.

The /etc/authpf/authpf.rules file contains the following rules:

wifi_if = "wi0"

pass in quick on $wifi_if proto tcp from $user_ip to port { ssh, http, \
 https } flags S/SA keep state

The administrative user charlie needs to be able to access the campus SMTP and POP3 servers in addition to surfing the web and using SSH. The following
rules are setup in /etc/authpf/users/charlie/authpf.rules:

wifi_if = "wi0"
smtp_server = "10.0.1.50"
pop3_server = "10.0.1.51"

pass in quick on $wifi_if proto tcp from $user_ip to $smtp_server \
 port smtp flags S/SA keep state
pass in quick on $wifi_if proto tcp from $user_ip to $pop3_server \
 port pop3 flags S/SA keep state
pass in quick on $wifi_if proto tcp from $user_ip to port { ssh, http, \
 https } flags S/SA keep state

The main ruleset -- located in /etc/pf.conf -- is setup as follows:

macros
wifi_if = "wi0"
ext_if = "fxp0"
dns_servers = "{ 10.0.1.56, 10.0.2.56 }"

table <authpf_users> persist

scrub in all

filter
block drop all

pass out quick on $ext_if inet proto tcp from \
 { $wifi_if:network, $ext_if } flags S/SA modulate state
pass out quick on $ext_if inet proto { udp, icmp } from \
 { $wifi_if:network, $ext_if } keep state

pass in quick on $wifi_if inet proto tcp from $wifi_if:network to $wifi_if \
 port ssh flags S/SA keep state

pass in quick on $wifi_if inet proto { tcp, udp } from <authpf_users> \
 to $dns_servers port domain keep state
anchor "authpf/*" in on $wifi_if

The ruleset is very simple and does the following:

● Block everything (default deny).
● Pass outgoing TCP, UDP, and ICMP traffic on the external interface from the wireless network and from the gateway itself.
● Pass incoming SSH traffic from the wireless network destined for the gateway itself. This rule is necessary to permit users to log in.
● Pass incoming DNS requests from all authenticated authpf users to the campus DNS servers.
● Create the anchor point "authpf" for incoming traffic on the wireless interface.

http://www.openbsd.org/faq/pf/authpf.html (4 of 5) [31/10/2005 10:45:44]

PF: Authpf: User Shell for Authenticating Gateways

The idea behind the main ruleset is to block everything and allow the least amount of traffic through as possible. Traffic is free to flow out on the external
interface but is blocked from entering the wireless interface by the default deny policy. Once a user authenticates, their traffic is permitted to pass in on the
wireless interface and to then flow through the gateway into the rest of the network. The quick keyword is used throughout so that PF doesn't have to evaluate
each named ruleset when a new connection passes through the gateway.

[Previous: Issues with FTP] [Contents] [Next: Firewall Redundancy with CARP and pfsync]

 www@openbsd.org

$OpenBSD: authpf.html,v 1.16 2005/05/21 05:55:43 joel Exp $

http://www.openbsd.org/faq/pf/authpf.html (5 of 5) [31/10/2005 10:45:44]

mailto:www@openbsd.org

PF: Firewall Redundancy with CARP and pfsync

[Previous: Authpf: User Shell for Authenticating Gateways] [Contents] [Next: Firewall for Home or Small Office]

PF: Firewall Redundancy with CARP and pfsync

Table of Contents

● Introduction to CARP

● CARP Operation

● Configuring CARP

● CARP Example

● Introduction to pfsync

● pfsync Operation

● Configuring pfsync

● pfsync Example

● Combining CARP and pfsync for Failover and Redundancy

● Operational Issues

❍ Configuring CARP and pfsync During Boot

❍ Forcing Failover of the Master

● Other References

Introduction to CARP

CARP is the Common Address Redundancy Protocol. Its primary purpose is to allow multiple hosts on the same network segment to share an IP address. CARP
is a secure, free alternative to the Virtual Router Redundancy Protocol and the Hot Standby Router Protocol.

CARP works by allowing a group of hosts on the same network segment to share an IP address. This group of hosts is referred to as a "redundancy group". The
redundancy group is assigned an IP address that is shared amongst the group members. Within the group, one host is designated the "master" and the rest as
"backups". The master host is the one that currently "holds" the shared IP; it responds to any traffic or ARP requests directed towards it. Each host may belong to
more than one redundancy group at a time.

One common use for CARP is to create a group of redundant firewalls. The virtual IP that is assigned to the redundancy group is configured on client machines as
the default gateway. In the event that the master firewall suffers a failure or is taken offline, the IP will move to one of the backup firewalls and service will
continue unaffected.

CARP supports IPv4 and IPv6.

CARP Operation

The master host in the group sends regular advertisements to the local network so that the backup hosts know it's still alive. If the backup hosts don't hear an
advertisement from the master for a set period of time, then one of them will take over the duties of master (whichever backup host has the lowest configured
advbase and advskew values).

It's possible for multiple CARP groups to exist on the same network segment. CARP advertisements contain the Virtual Host ID which allows group members to
identify which redundancy group the advertisement belongs to.

In order to prevent a malicious user on the network segment from spoofing CARP advertisements, each group can be configured with a password. Each CARP
packet sent to the group is then protected by an SHA1 HMAC.

Since CARP is its own protocol it should have an explicit pass rule in filter rulesets:

http://www.openbsd.org/faq/pf/carp.html (1 of 6) [31/10/2005 10:45:48]

http://www.openbsd.org/index.html
http://www.ietf.org/rfc/rfc3768.txt
http://www.ietf.org/rfc/rfc2281.txt

PF: Firewall Redundancy with CARP and pfsync

pass out on $carp_dev proto carp keep state

$carp_dev should be the physical interface that CARP is communicating over.

Configuring CARP

Each redundancy group is represented by a carp(4) virtual network interface. As such, CARP is configured using ifconfig(8).

ifconfig carpN create

ifconfig carpN vhid vhid [pass password] [carpdev carpdev] \
 [advbase advbase] [advskew advskew] [state state] ipaddress mask

carpN
The name of the carp(4) virtual interface where N is an integer that represents the interface's number (e.g. carp10).

vhid
The Virtual Host ID. This is a unique number that is used to identify the redundancy group to other nodes on the network. Acceptable values are from 1
to 255.

password
The authentication password to use when talking to other CARP-enabled hosts in this redundancy group. This must be the same on all members of the
group.

carpdev
This optional parameter specifies the physical network interface that belongs to this redundancy group. By default, CARP will try to determine which
interface to use by looking for a physical interface that is in the same subnet as the ipaddress and mask combination given to the carp(4) interface.

advbase
This optional parameter specifies how often, in seconds, to advertise that we're a member of the redundancy group. The default is 1 second. Acceptable
values are from 1 to 255.

advskew
This optional parameter specifies how much to skew the advbase when sending CARP advertisements. By manipulating advbase, the master
CARP host can be chosen. The higher the number, the less preferred the host will be when choosing a master. The default is 0. Acceptable values are
from 1 to 254.

state
Force a carp(4) interface into a certain state. Valid states are init, backup, and master.

ipaddress
This is the shared IP address assigned to the redundancy group. This address does not have to be in the same subnet as the IP address on the physical
interface (if present). This address needs to be the same on all hosts in the group, however.

mask
The subnet mask of the shared IP.

Further CARP behavior can be controlled via sysctl(8).

net.inet.carp.allow
Accept incoming CARP packets or not. Default is 1 (yes).

net.inet.carp.preempt
Allow hosts within a redundancy group that have a better advbase and advskew to preempt the master. In addition, this option also enables failing
over all interfaces in the event that one interface goes down. If one physical CARP-enabled interface goes down, CARP will change advskew to 240
on all other CARP-enabled interfaces, in essence, failing itself over. This option is 0 (disabled) by default.

net.inet.carp.log
Log bad CARP packets. Default is 0 (disabled).

net.inet.carp.arpbalance
Load balance traffic across multiple redundancy group hosts. Default is 0 (disabled). See carp(4) for more information.

CARP Example

An example CARP configuration.

sysctl -w net.inet.carp.allow=1
ifconfig carp1 create
ifconfig carp1 vhid 1 pass mekmitasdigoat carpdev em0 \
 advskew 100 10.0.0.1 255.255.255.0

This sets up the following:

● Enables receipt of CARP packets (this is the default setting).

http://www.openbsd.org/faq/pf/carp.html (2 of 6) [31/10/2005 10:45:48]

http://www.openbsd.org/cgi-bin/man.cgi?query=carp&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=carp&sektion=4&manpath=OpenBSD+3.7

PF: Firewall Redundancy with CARP and pfsync

● Creates a carp(4) interface, carp1.
● Configures carp1 for virtual host #1, enables a password, sets em0 as the interface belonging to the group, and makes this host a backup due to the
advskew of 100 (assuming of course that the master is set up with an advskew less than 100). The shared IP assigned to this group is
10.0.0.1/255.255.255.0.

Running ifconfig on carp1 shows the status of the interface.

ifconfig carp1
carp1: flags=8802<UP,BROADCAST,SIMPLEX,MULTICAST> mtu 1500
 carp: BACKUP carpdev em0 vhid 1 advbase 1 advskew 100
 inet 10.0.0.1 netmask 0xffffff00 broadcast 10.0.0.255

Introduction to pfsync

The pfsync(4) network interface exposes certain changes made to the pf(4) state table. By monitoring this device using tcpdump(8), state table changes can be

observed in real time. In addition, the pfsync(4) interface can send these state change messages out on the network so that other nodes running PF can merge the
changes into their own state tables. Likewise, pfsync(4) can also listen on the network for incoming messages.

pfsync Operation

By default, pfsync(4) does not send or receive state table updates on the network; however, updates can still be monitored using tcpdump(8) or other such tools on
the local machine.

When pfsync(4) is set up to send and receive updates on the network, the default behavior is to multicast updates out on the local network. All updates are sent
without authentication. Best common practice is either:

1. Connect the two nodes that will be exchanging updates back-to-back using a crossover cable and use that interface as the syncdev (see below).

2. Use the syncpeer ifconfig(8) option (see below) so that updates are unicast directly to the peer, then configure ipsec(4) between the hosts to secure

the pfsync(4) traffic.

When updates are being sent and received on the network, pfsync packets should be passed in the filter ruleset:

pass on $sync_if proto pfsync

$sync_if should be the physical interface that pfsync(4) is communicating over.

Configuring pfsync

Since pfsync(4) is a virtual network interface, it is configured using ifconfig(8).

ifconfig pfsyncN syncdev syncdev [syncpeer syncpeer]

pfsyncN
The name of the pfsync(4) interface. pfsync0 exists by default when using the GENERIC kernel.

syncdev
The name of the physical interface used to send pfsync updates out.

syncpeer
This optional parameter specifies the IP address of a host to exchange pfsync updates with. By default pfsync updates are multicast on the local
network. This option overrides that behavior and instead unicasts the update to the specified syncpeer.

pfsync Example

An example pfsync configuration.

ifconfig pfsync0 syncdev em1

This enables pfsync on the em1 interface. Outgoing updates will be multicast on the network allowing any other host running pfsync to receive them.

http://www.openbsd.org/faq/pf/carp.html (3 of 6) [31/10/2005 10:45:48]

http://www.openbsd.org/cgi-bin/man.cgi?query=pfsync&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=tcpdump&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=ipsec&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8&manpath=OpenBSD+3.7

PF: Firewall Redundancy with CARP and pfsync

Combining CARP and pfsync For Failover

By combining the features of CARP and pfsync, a group of two or more firewalls can be used to create a highly-available, fully redundant firewall cluster.

CARP:
Handles the automatic failover of one firewall to another.

pfsync:
Synchronizes the state table amongst all the firewalls. In the event of a failover, traffic can flow uninterrupted through the new master firewall.

An example scenario. Two firewalls, fw1 and fw2.

 +----| WAN/Internet |----+
 | |
 em2| |em2
 +-----+ +-----+
 | fw1 |-em1----------em1-| fw2 |
 +-----+ +-----+
 em0| |em0
 | |
 ---+-------Shared LAN-------+---

The firewalls are connected back-to-back using a crossover cable on em1. Both are connected to the LAN on em0 and to a WAN/Internet connection on em2. IP
addresses are as follows:

● fw1 em0: 172.16.0.1
● fw1 em1: 10.10.10.1
● fw1 em2: 192.0.2.1
● fw2 em0: 172.16.0.2
● fw2 em1: 10.10.10.2
● fw2 em2: 192.0.2.2
● LAN shared IP: 172.16.0.100
● WAN/Internet shared IP: 192.0.2.100

The network policy is that fw1 will be the preferred master.

Configure fw1:

! enable preemption and group interface failover
sysctl -w net.inet.carp.preempt=1

! configure pfsync
ifconfig em1 10.10.10.1 netmask 255.255.255.0
ifconfig pfsync0 syncdev em1
ifconfig pfsync0 up

! configure CARP on the LAN side
ifconfig carp1 create
ifconfig carp1 vhid 1 carpdev em0 pass lanpasswd \
 172.16.0.100 255.255.255.0

! configure CARP on the WAN/Internet side
ifconfig carp2 create
ifconfig carp2 vhid 2 carpdev em2 pass netpasswd \
 192.0.2.100 255.255.255.0

Configure fw2:

http://www.openbsd.org/faq/pf/carp.html (4 of 6) [31/10/2005 10:45:48]

PF: Firewall Redundancy with CARP and pfsync

! enable preemption and group interface failover
sysctl -w net.inet.carp.preempt=1

! configure pfsync
ifconfig em1 10.10.10.2 netmask 255.255.255.0
ifconfig pfsync0 syncdev em1
ifconfig pfsync0 up

! configure CARP on the LAN side
ifconfig carp1 create
ifconfig carp1 vhid 1 carpdev em0 pass lanpasswd \
 advskew 128 172.16.0.100 255.255.255.0

! configure CARP on the WAN/Internet side
ifconfig carp2 create
ifconfig carp2 vhid 2 carpdev em2 pass netpasswd \
 advskew 128 192.0.2.100 255.255.255.0

Operational Issues

Some common operational issues encountered with CARP/pfsync.

Configuring CARP and pfsync During Boot

Since carp(4) and pfsync(4) are both types of network interfaces, they can be configured at boot by creating a hostname.if(5) file. The netstart startup script will

take care of creating the interface and configuring it.

Examples:

/etc/hostname.carp1
inet 172.16.0.100 255.255.255.0 172.16.0.255 vhid 1 carpdev em0 \
 pass lanpasswd

/etc/hostname.pfsync0
up syncdev em1

Forcing Failover of the Master

There can be times when it's necessary to failover or demote the master node on purpose. Examples include taking the master node down for maintenance or
when troubleshooting a problem. The objective here is to gracefully fail over traffic to one of the backup hosts so that users do not notice any impact.

To failover, shut down the carp(4) interface on the master node. This will cause the master to advertise itself with an "infinite" advbase and advskew. The
backup host(s) will see this and immediately take over the role of master.

ifconfig carp1 down

Other References

Please see these other sources for more information:

● carp(4)

● pfsync(4)

● ifconfig(8)

● hostname.if(5)

● pf.conf(5)

[Previous: Authpf: User Shell for Authenticating Gateways] [Contents] [Next: Firewall for Home or Small Office]

http://www.openbsd.org/faq/pf/carp.html (5 of 6) [31/10/2005 10:45:48]

http://www.openbsd.org/cgi-bin/man.cgi?query=hostname.if&sektion=5&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=netstart&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=carp&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=pfsync&sektion=4&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=hostname.if&sektion=5&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5&manpath=OpenBSD+3.7

PF: Firewall Redundancy with CARP and pfsync

 www@openbsd.org

$OpenBSD: carp.html,v 1.6 2005/09/24 21:00:58 msf Exp $

http://www.openbsd.org/faq/pf/carp.html (6 of 6) [31/10/2005 10:45:48]

mailto:www@openbsd.org

PF: Example: Firewall for Home or Small Office

[Previous: Firewall Redundancy with CARP and pfsync] [Contents]

PF: Example: Firewall for Home or Small Office

Table of Contents

● The Scenario

❍ The Network

❍ The Objective

❍ Preparation

● The Ruleset

❍ Macros

❍ Options

❍ Scrub

❍ Network Address Translation

❍ Redirection

❍ Filter Rules

● The Complete Ruleset

The Scenario

In this example, PF is running on an OpenBSD machine acting as a firewall and NAT gateway for a small network in a home or office. The overall objective is to
provide Internet access to the network and to allow limited access to the firewall machine from the Internet. This document will go through a complete ruleset
that does just that.

The Network

The network is setup like this:

 [COMP1] [COMP3]
 | | ADSL
 ---+------+-----+------- fxp0 [OpenBSD] ep0 -------- (Internet)
 |
 [COMP2]

There are a number of computers on the internal network; the diagram shows three but the actual number is irrelevant. These computers are regular workstations
used for web surfing, email, chatting, etc., except for COMP3 which is also running a small web server. The internal network is using the 192.168.0.0 /
255.255.255.0 network block.

The OpenBSD router is a Pentium 100 with two network cards: a 3com 3c509B (ep0) and an Intel EtherExpress Pro/100 (fxp0). The router has an ADSL
connection to the Internet and is using NAT to share this connection with the internal network. The IP address on the external interface is dynamically assigned
by the Internet Service Provider.

The Objective

The objectives are:

● Provide unrestricted Internet access to each internal computer.
● Use a "default deny" filter ruleset.

http://www.openbsd.org/faq/pf/example1.html (1 of 5) [31/10/2005 10:45:51]

http://www.openbsd.org/index.html

PF: Example: Firewall for Home or Small Office

● Allow the following incoming traffic to the firewall from the Internet:
❍ SSH (TCP port 22): this will be used for external maintenance of the firewall machine.
❍ Auth/Ident (TCP port 113): used by some services such as SMTP and IRC.
❍ ICMP Echo Requests: the ICMP packet type used by ping(8).

● Redirect TCP port 80 connection attempts (which are attempts to access a web server) to computer COMP3. Also, permit TCP port 80 traffic destined
for COMP3 through the firewall.

● Log filter statistics on the external interface.
● By default, reply with a TCP RST or ICMP Unreachable for blocked packets.
● Make the ruleset as simple and easy to maintain as possible.

Preparation

This document assumes that the OpenBSD host has been properly configured to act as a router, including verifying IP networking setup, Internet connectivity,
and setting net.inet.ip.forwarding to "1".

The Ruleset

The following will step through a ruleset that will accomplish the above goals.

Macros

The following macros are defined to make maintenance and reading of the ruleset easier:

int_if = "fxp0"
ext_if = "ep0"

tcp_services = "{ 22, 113 }"
icmp_types = "echoreq"

priv_nets = "{ 127.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8 }"

comp3 = "192.168.0.3"

The first two lines define the network interfaces that filtering will happen on. The third and fourth lines list the TCP port numbers of the services that will be
opened up to the Internet (SSH and ident/auth) and the ICMP packet types that will be permitted to reach the firewall machine. The fifth line defines the loopback
and RFC 1918 address blocks. Finally, the last line defines the IP address of COMP3.

Note: If the ADSL Internet connection required PPPoE, then filtering and NAT would have to take place on the tun0 interface and not on ep0.

Options

The following two options will set the default response for block filter rules and turn statistics logging "on" for the external interface:

set block-policy return
set loginterface $ext_if

Scrub

There is no reason not to use the recommended scrubbing of all incoming traffic, so this is a simple one-liner:

scrub in all

Network Address Translation

To perform NAT for the entire internal network the following nat rule is used:

nat on $ext_if from $int_if:network to any -> ($ext_if)

Since the IP address on the external interface is assigned dynamically, parenthesis are placed around the translation interface so that PF will notice when the
address changes.

http://www.openbsd.org/faq/pf/example1.html (2 of 5) [31/10/2005 10:45:51]

http://www.openbsd.org/cgi-bin/man.cgi?query=ping&sektion=8&manpath=OpenBSD+3.7
http://www.geektools.com/rfc/rfc1918.txt
http://www.openbsd.org/cgi-bin/man.cgi?query=pppoe&sektion=8&manpath=OpenBSD+3.7

PF: Example: Firewall for Home or Small Office

Redirection

The first redirection rule needed is for ftp-proxy(8) so that FTP clients on the local network can connect to FTP servers on the Internet.

rdr on $int_if proto tcp from any to any port 21 -> 127.0.0.1 port 8021

Note that this rule will only catch FTP connections to port 21. If users regularly connect to FTP servers on other ports, then a list should be used to specify the
destination port, for example: from any to any port { 21, 2121 }.

The second redirection rule catches any attempts by someone on the Internet to connect to TCP port 80 on the firewall. Legitimate attempts to access this port will
be from users trying to access the network's web server. These connection attempts need to be redirected to COMP3:

rdr on $ext_if proto tcp from any to any port 80 -> $comp3

Filter Rules

Now the filter rules. Start with the default deny:

block all

At this point nothing will go through the firewall, not even from the internal network. The following rules will open up the firewall as per the objectives above as
well as open up any necessary virtual interfaces.

Every Unix system has a "loopback" interface. It's a virtual network interface that is used by applications to talk to each other inside the system. In general, all
traffic should be passed on the loopback interface. On OpenBSD, the loopback interface is lo(4).

pass quick on lo0 all

Next, the RFC 1918 addresses will be blocked from entering or exiting the external interface. These addresses should never appear on the public Internet, and

filtering them will ensure that the router does not "leak" these addresses out from the internal network and also block any incoming packets with a source address
in one of those networks.

block drop in quick on $ext_if from $priv_nets to any
block drop out quick on $ext_if from any to $priv_nets

Note that block drop is used to tell PF not to respond with a TCP RST or ICMP Unreachable packet. Since the RFC 1918 addresses don't exist on the
Internet, any packets sent to those addresses will never make it there anyways. The quick option is used to tell PF not to bother evaluating the rest of the filter
rules if one of the above rules matches; packets to or from the $priv_nets networks will be immediately dropped.

Now open the ports used by those network services that will be available to the Internet:

pass in on $ext_if inet proto tcp from any to ($ext_if) \
 port $tcp_services flags S/SA keep state

Specifying the network ports in the macro $tcp_services makes it simple to open additional services to the Internet by simply editing the macro and
reloading the ruleset. UDP services can also be opened up by creating a $udp_services macro and adding a filter rule, similar to the one above, that specifies
proto udp.

In addition to having an rdr rule which passes the web server traffic to COMP3, we MUST also pass this traffic through the firewall:

pass in on $ext_if proto tcp from any to $comp3 port 80 \
 flags S/SA synproxy state

For an added bit of safety, we'll make use of the TCP SYN Proxy to further protect the web server.

In order for active mode FTP connections to work from inside the LAN, the following rule must be in place to pass the ftp-data connection initiated by the FTP
server back to the client. Since FTP connections are being proxied by ftp-proxy, it will actually accept the ftp-data connection itself and then relay the data to the
client on the LAN.

http://www.openbsd.org/faq/pf/example1.html (3 of 5) [31/10/2005 10:45:51]

http://www.openbsd.org/cgi-bin/man.cgi?query=ftp-proxy&sektion=8&manpath=OpenBSD+3.7
http://www.openbsd.org/cgi-bin/man.cgi?query=lo&sektion=4&manpath=OpenBSD+3.7
http://www.geektools.com/rfc/rfc1918.txt

PF: Example: Firewall for Home or Small Office

pass in on $ext_if inet proto tcp from port 20 to ($ext_if) \
 user proxy flags S/SA keep state

ICMP traffic must now be passed:

pass in inet proto icmp all icmp-type $icmp_types keep state

Similar to the $tcp_services macro, the $icmp_types macro can easily be edited to change the types of ICMP packets that will be allowed to reach the
firewall. Note that this rule applies to all network interfaces.

Now traffic must be passed to and from the internal network. We'll assume that the users on the internal network know what they are doing and aren't going to be
causing trouble. This is not necessarily a valid assumption; a much more restrictive ruleset would be appropriate for some environments.

pass in on $int_if from $int_if:network to any keep state

The above rule will permit any internal machine to send packets through the firewall; however, it will not permit the firewall to initiate a connection to an internal
machine. Is this a good idea? That depends on some of the finer details of the network setup. If the firewall is also a DHCP server, it may need to "ping" an
address to verify its availability before assigning it. Permitting the firewall to connect to the internal network also allows someone who has ssh'ed into the firewall
from the Internet to then access machines on the network. Keep in mind that not allowing the firewall to communicate directly to the network is not a large
security benefit; if someone gets access to the firewall they can probably alter the filter rules anyways. By adding the following rule, the firewall will be able to
initiate connections to the internal network:

pass out on $int_if from any to $int_if:network keep state

Note that if both of these lines are in place, the keep state option is not needed; all packets will be able to pass through the internal interface because there is
a rule to pass packets in both directions. However, if the pass out line is not included, the pass in line must include keep state. There is also some
performance benefit to keeping state: State tables are checked before rules are evaluated, and if a state match is found, the packet is passed through the firewall
without going through ruleset evaluation. This can offer a performance benefit on a heavily loaded firewall, though in a system this simple it is unlikely to
generate enough load to matter.

Finally, pass traffic out on the external interface:

pass out on $ext_if proto tcp all modulate state flags S/SA
pass out on $ext_if proto { udp, icmp } all keep state

TCP, UDP, and ICMP traffic is permitted to exit the firewall towards the Internet. State information is kept so that the returning packets will be passed in through
the firewall.

The Complete Ruleset

macros
int_if = "fxp0"
ext_if = "ep0"

tcp_services = "{ 22, 113 }"
icmp_types = "echoreq"

priv_nets = "{ 127.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8 }"

comp3 = "192.168.0.3"

options
set block-policy return
set loginterface $ext_if

scrub
scrub in all

nat/rdr
nat on $ext_if from $int_if:network to any -> ($ext_if)
rdr on $int_if proto tcp from any to any port 21 -> 127.0.0.1 \
 port 8021
rdr on $ext_if proto tcp from any to any port 80 -> $comp3

http://www.openbsd.org/faq/pf/example1.html (4 of 5) [31/10/2005 10:45:51]

PF: Example: Firewall for Home or Small Office

filter rules
block all

pass quick on lo0 all

block drop in quick on $ext_if from $priv_nets to any
block drop out quick on $ext_if from any to $priv_nets

pass in on $ext_if inet proto tcp from any to ($ext_if) \
 port $tcp_services flags S/SA keep state

pass in on $ext_if proto tcp from any to $comp3 port 80 \
 flags S/SA synproxy state

pass in on $ext_if inet proto tcp from port 20 to ($ext_if) \
 user proxy flags S/SA keep state

pass in inet proto icmp all icmp-type $icmp_types keep state

pass in on $int_if from $int_if:network to any keep state
pass out on $int_if from any to $int_if:network keep state

pass out on $ext_if proto tcp all modulate state flags S/SA
pass out on $ext_if proto { udp, icmp } all keep state

[Previous: Firewall Redundancy with CARP and pfsync] [Contents]

 www@openbsd.org

$OpenBSD: example1.html,v 1.20 2005/05/21 05:55:43 joel Exp $

http://www.openbsd.org/faq/pf/example1.html (5 of 5) [31/10/2005 10:45:51]

mailto:www@openbsd.org

	openbsd.org
	PF: The OpenBSD Packet Filter
	PF: Getting Started
	PF: Lists and Macros
	PF: Tables
	PF: Packet Filtering
	PF: Network Address Translation (NAT)
	PF: Traffic Redirection (Port Forwarding)
	PF: Shortcuts For Creating Rulesets
	PF: Runtime Options
	PF: Scrub (Packet Normalization)
	PF: Anchors
	PF: Packet Queueing and Prioritization
	PF: Address Pools and Load Balancing
	PF: Packet Tagging (Policy Filtering)
	PF: Logging
	PF: Performance
	PF: Issues with FTP
	PF: Authpf: User Shell for Authenticating Gateways
	PF: Firewall Redundancy with CARP and pfsync
	PF: Example: Firewall for Home or Small Office

