Units Conversion

Edition 2.14 for units Version 2.15

Adrian Mariano

This manual is for GNU Units (version 2.15), which performs units conversions and units
calculations.

Copyright (© 1996, 1997, 1999, 2000, 2001, 2002, 2004, 2005, 2007, 2011-2017 Free Software
Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.

Table of Contents

1 Overview of units............................... 1
2 Interacting with units........................ ... 1
3 Using units Non-Interactively.................. 4
4 Unit Definitions 4
4.1 English Customary Units..........ccoooiiiiiiiiiiiiiiiii..)
5 Unit Expressions 6
B.1 OPErators . . vttt et e 6
5.2 Sums and Differences of Units oL, 8
5.3 Numbers as Units ... 9
5.4 Built-in Functions ... 9
5.5 Previous Result i 10
5.6 Complicated Unit Expressionscoooiiiiiiiaiin... 11
5.7 Backwards Compatibility: ‘“*’ and =" 12
6 Nonlinear Unit Conversions................... 12
6.1 Temperature Conversions.ouueeiniiiiniieennnee... 13
6.2 Other Nonlinear UnitS.........ooirtiiiiii i 14
7 Unit Lists: Conversion to Sums of Units..... 15
8 Logging Calculations........................... 19
9 Invoking units.............. 20
10 Adding Your Own Definitions 25
10.1 Units Data Files. ... 25
10.2 Defining New Units and Prefixes.............................. 26
10.3 Defining Nonlinear Units, 27
10.4 Defining Piecewise Linear Units, 29
10.5 Defining Unit List Aliasesooeeiiiiie .. 31
11 Numeric Output Format 31
11.1 Format Specificationo 32
112 Flags. oot 32
11.3 Field Width. ... 33
114 PreciSionooiiii i e 33

12 Localization 34
121 LOCAlE ..ottt 34
12.2 Additional Localization.ooviiiiiiiiaiiii. .. 35

13 Environment Variables....................... 37

14 Data Files............., 38

15 Unicode Support............... 38

16 Readline Support............................. 39

17 Updating Currency Exchange Rates 40

18 Database Command Syntax.................. 40

19 GNU Free Documentation License.......... 41

ii

Units Conversion 1

1 Overview of units

The units program converts quantities expressed in various systems of measurement to their
equivalents in other systems of measurement. Like many similar programs, it can handle
multiplicative scale changes. It can also handle nonlinear conversions such as Fahrenheit
to Celsius;' see Section 6.1 [Temperature Conversions], page 13. The program can also
perform conversions from and to sums of units, such as converting between meters and feet
plus inches.

Basic operation is simple: you enter the units that you want to convert from and the
units that you want to convert to. You can use the program interactively with prompts, or
you can use it from the command line.

Beyond simple unit conversions, units can be used as a general-purpose scientific cal-
culator that keeps track of units in its calculations. You can form arbitrary complex math-
ematical expressions of dimensions including sums, products, quotients, powers, and even
roots of dimensions. Thus you can ensure accuracy and dimensional consistency when work-
ing with long expressions that involve many different units that may combine in complex
ways; for an illustration, see Section 5.6 [Complicated Unit Expressions], page 11.

The units are defined in an external data file. You can use the extensive data file that
comes with this program, or you can provide your own data file to suit your needs. You
can also use your own data file to supplement the standard data file.

You can change the default behavior of units with various options given on the command
line. See Chapter 9 [Invoking Units]|, page 20, for a description of the available options.

2 Interacting with units

To invoke units for interactive use, type units at your shell prompt. The program will
print something like this:

Currency exchange rates from www.timegenie.com on 2014-03-05
2860 units, 109 prefixes, 85 nonlinear units

You have:

At the ‘You have:’ prompt, type the quantity and units that you are converting from. For
example, if you want to convert ten meters to feet, type 10 meters. Next, units will print
‘You want:’. You should type the units you want to convert to. To convert to feet, you
would type feet. If the readline library was compiled in then tab will complete unit
names. See Chapter 16 [Readline Support], page 39, for more information about readline.
To quit the program under Unix, press Ctrl-C or Ctrl-D. Under Windows, press Ctrl-C
or Ctrl-Z; with the latter, you may also need to press Enter.

The result will be displayed in two ways. The first line of output, which is marked with
a ‘*’ to indicate multiplication, gives the result of the conversion you have asked for. The

! But Fahrenheit to Celsius is linear, you insist. Not so. A transformation T is linear if T'(x + y) =
T(z) + T(y) and this fails for T'(z) = az + b. This transformation is affine, but not linear.

Units Conversion 2

second line of output, which is marked with a ‘/’ to indicate division, gives the inverse of
the conversion factor. If you convert 10 meters to feet, units will print

* 32.808399
/ 0.03048

which tells you that 10 meters equals about 32.8 feet. The second number gives the con-
version in the opposite direction. In this case, it tells you that 1 foot is equal to about 0.03
dekameters since the dekameter is 10 meters. It also tells you that 1/32.8 is about 0.03.

The units program prints the inverse because sometimes it is a more convenient number.
In the example above, for example, the inverse value is an exact conversion: a foot is exactly
0.03048 dekameters. But the number given the other direction is inexact.

If you convert grains to pounds, you will see the following;:

You have: grains

You want: pounds
* 0.00014285714
/ 7000

From the second line of the output you can immediately see that a grain is equal to a seven
thousandth of a pound. This is not so obvious from the first line of the output. If you find
the output format confusing, try using the --verbose option:

You have: grain

You want: aeginamina
grain = 0.00010416667 aeginamina
grain = (1 / 9600) aeginamina

If you request a conversion between units that measure reciprocal dimensions, then units
will display the conversion results with an extra note indicating that reciprocal conversion
has been done:

You have: 6 ohms

You want: siemens
reciprocal conversion
* 0.16666667
/ 6

Reciprocal conversion can be suppressed by using the —-strict option. As usual, use the
--verbose option to get more comprehensible output:

You have: tex
You want: typp
reciprocal conversion
1 / tex = 496.05465 typp
1/ tex = (1 / 0.0020159069) typp

You have: 20 mph
You want: sec/mile
reciprocal conversion
1 / 20 mph = 180 sec/mile
1 / 20 mph (1 / 0.0055555556) sec/mile

Units Conversion 3

If you enter incompatible unit types, the units program will print a message indicating
that the units are not conformable and it will display the reduced form for each unit:

You have: ergs/hour
You want: fathoms kg2 / day
conformability error
2.7777778e-11 kg m"2 / sec”3
2.1166667e-05 kg™2 m / sec

If you only want to find the reduced form or definition of a unit, simply press Enter at the
‘You want:’ prompt. Here is an example:

You have: jansky
You want:
Definition: fluxunit = le-26 W/m"2 Hz = 1e-26 kg / s”2

The output from units indicates that the jansky is defined to be equal to a fluxunit which
in turn is defined to be a certain combination of watts, meters, and hertz. The fully reduced
(and in this case somewhat more cryptic) form appears on the far right.

Some named units are treated as dimensionless in some situations. These units include
the radian and steradian. These units will be treated as equal to 1 in units conversions.
Power is equal to torque times angular velocity. This conversion can only be performed if
the radian is dimensionless.

You have: (14 ft 1bf) (12 radians/sec)
You want: watts

* 227.77742

/ 0.0043902509

It is also possible to compute roots and other non-integer powers of dimensionless units;
this allows computations such as the altitude of geosynchronous orbit:

You have: cuberoot(G earthmass / (circle/siderealday) "2) - earthradius
You want: miles

* 22243.267

/ 4.4957425e-05

Named dimensionless units are not treated as dimensionless in other contexts. They cannot
be used as exponents so for example, ‘meter"radian’ is forbidden.

If you want a list of options you can type 7 at the ‘You want:’ prompt. The program
will display a list of named units that are conformable with the unit that you entered at
the ‘You have:’ prompt above. Conformable unit combinations will not appear on this list.

Typing help at either prompt displays a short help message. You can also type help
followed by a unit name. This will invoke a pager on the units data base at the point where
that unit is defined. You can read the definition and comments that may give more details
or historical information about the unit. (You can generally quit out of the page by pressing
‘q".)

Typing search text will display a list of all of the units whose names contain text as a
substring along with their definitions. This may help in the case where you aren’t sure of
the right unit name.

Units Conversion 4

3 Using units Non-Interactively

The units program can perform units conversions non-interactively from the command
line. To do this, type the command, type the original unit expression, and type the new
units you want. If a units expression contains non-alphanumeric characters, you may need
to protect it from interpretation by the shell using single or double quote characters.

If you type
units "2 liters" quarts
then units will print

* 2.1133764
/ 0.47317647

and then exit. The output tells you that 2 liters is about 2.1 quarts, or alternatively that
a quart is about 0.47 times 2 liters.

If the conversion is successful, then units will return success (zero) to the calling en-
vironment. If you enter non-conformable units then units will print a message giving the
reduced form of each unit and it will return failure (nonzero) to the calling environment.

When you invoke units with only one argument, it will print out the definition of the
specified unit. It will return failure if the unit is not defined and success if the unit is
defined.

4 Unit Definitions

The conversion information is read from a units data file that is called definitions.units
and is usually located in the /usr/share/units directory. If you invoke units with the
-V option, it will print the location of this file. The default file includes definitions for all
familiar units, abbreviations and metric prefixes. It also includes many obscure or archaic
units. Many common spelled-out numbers (e.g., ‘seventeen’) are recognized.

Many constants of nature are defined, including these:

pi ratio of circumference to diameter
c speed of light

e charge on an electron

force acceleration of gravity

mole Avogadro’s number

water pressure per unit height of water
Hg pressure per unit height of mercury
au astronomical unit

k Boltzman’s constant

mu0 permeability of vacuum

epsilon0 permittivity of vacuum

G Gravitational constant

mach speed of sound

The standard data file includes atomic masses for all of the elements and numerous other
constants. Also included are the densities of various ingredients used in baking so that

Units Conversion 5

‘2 cups flour_sifted’ can be converted to ‘grams’. This is not an exhaustive list. Consult
the units data file to see the complete list, or to see the definitions that are used.

The ‘pound’ is a unit of mass. To get force, multiply by the force conversion unit ‘force’
or use the shorthand ‘1bf’. (Note that ‘g’ is already taken as the standard abbreviation for
the gram.) The unit ‘ounce’ is also a unit of mass. The fluid ounce is ‘fluidounce’ or ‘floz’.
When British capacity units differ from their US counterparts, such as the British Imperial
gallon, the unit is defined both ways with ‘br’ and ‘us’ prefixes. Your locale settings will
determine the value of the unprefixed unit. Currency is prefixed with its country name:
‘belgiumfranc’, ‘britainpound’.

When searching for a unit, if the specified string does not appear exactly as a unit
name, then the units program will try to remove a trailing ‘s’, ‘es’. Next units will
replace a trailing ‘ies’ with ‘y’. If that fails, units will check for a prefix. The database
includes all of the standard metric prefixes. Only one prefix is permitted per unit, so
‘micromicrofarad’ will fail. However, prefixes can appear alone with no unit following
them, so ‘micro*microfarad’ will work, as will ‘micro microfarad’.

To find out which units and prefixes are available, read the standard units data file,
which is extensively annotated.

4.1 English Customary Units

English customary units differ in various ways in different regions. In Britain a complex
system of volume measurements featured different gallons for different materials such as a
wine gallon and ale gallon that different by twenty percent. This complexity was swept
away in 1824 by a reform that created an entirely new gallon, the British Imperial gallon
defined as the volume occupied by ten pounds of water. Meanwhile in the USA the gallon
is derived from the 1707 Winchester wine gallon, which is 231 cubic inches. These gallons
differ by about twenty percent. By default if units runs in the ‘en_GB’ locale you will get
the British volume measures. If it runs in the ‘en_US’ locale you will get the US volume
measures. In other locales the default values are the US definitions. If you wish to force
different definitions then set the environment variable UNITS_ENGLISH to either ‘US’ or ‘GB’
to set the desired definitions independent of the locale.

Before 1959, the value of a yard (and other units of measure defined in terms of it) differed
slightly among English-speaking countries. In 1959, Australia, Canada, New Zealand, the
United Kingdom, the United States, and South Africa adopted the Canadian value of 1 yard
= 0.9144 m (exactly), which was approximately halfway between the values used by the UK
and the US; it had the additional advantage of making 1 inch = 2.54 c¢cm (exactly). This
new standard was termed the International Yard. Australia, Canada, and the UK then
defined all customary lengths in terms of the International Yard (Australia did not define
the furlong or rod); because many US land surveys were in terms of the pre-1959 units, the
US continued to define customary surveyors’ units (furlong, chain, rod, and link) in terms
of the previous value for the foot, which was termed the US survey foot. The US defined
a US survey mile as 5280 US survey feet, and defined a statute mile as a US survey mile.
The US values for these units differ from the international values by about 2 ppm.

The units program uses the international values for these units; the US values can
be obtained by using either the ‘US’ or the ‘survey’ prefix. In either case, the simple
familiar relationships among the units are maintained, e.g., 1 ‘furlong’ = 660 ‘ft’, and

Units Conversion 6

1 ‘USfurlong’ = 660 ‘USft’, though the metric equivalents differ slightly between the two
cases. The ‘US’ prefix or the ‘survey’ prefix can also be used to obtain the US survey
mile and the value of the US yard prior to 1959, e.g., ‘USmile’ or ‘surveymile’ (but not
‘USsurveymile’). To get the US value of the statute mile, use either ‘USstatutemile’ or
‘USmile’.

Except for distances that extend over hundreds of miles (such as in the US State Plane
Coordinate System), the differences in the miles are usually insignificant:

You have: 100 surveymile - 100 mile
You want: inch

* 12.672025

/ 0.078913984

The pre-1959 UK values for these units can be obtained with the prefix ‘UK’.

In the US, the acre is officially defined in terms of the US survey foot, but units uses a
definition based on the international foot. If you want the official US acre use ‘USacre’ and
similarly use ‘USacrefoot’ for the official US version of that unit. The difference between
these units is about 4 parts per million.

5 Unit Expressions

5.1 Operators

You can enter more complicated units by combining units with operations such as multi-
plication, division, powers, addition, subtraction, and parentheses for grouping. You can
use the customary symbols for these operators when units is invoked with its default op-
tions. Additionally, units supports some extensions, including high priority multiplication
using a space, and a high priority numerical division operator (‘|’) that can simplify some
expressions.

You multiply units using a space or an asterisk (‘*’). The next example shows both
forms:

You have: arabicfoot * arabictradepound * force
You want: ft 1bf

* 0.7296

/ 1.370614

You can divide units using the slash (‘/’) or with ‘per’:

You have: furlongs per fortnight
You want: m/s

* 0.00016630986

/ 6012.8727

You can use parentheses for grouping:

You have: (1/2) kg / (kg/meter)
You want: league

* 0.00010356166

/ 9656.0833

Units Conversion 7

White space surrounding operators is optional, so the previous example could have used
‘(1/2)kg/ (kg/meter)’. As a consequence, however, hyphenated spelled-out numbers (e.g.,
‘forty-two’) cannot be used; ‘forty-two’ is interpreted as ‘40 - 2’.

Multiplication using a space has a higher precedence than division using a slash and is
evaluated left to right; in effect, the first ‘/’ character marks the beginning of the denomina-
tor of a unit expression. This makes it simple to enter a quotient with several terms in the
denominator: ‘J / mol X’. The ‘*’ and ‘/’ operators have the same precedence, and are eval-
uated left to right; if you multiply with ‘*’, you must group the terms in the denominator
with parentheses: ‘J / (mol * K)’.

The higher precedence of the space operator may not always be advantageous. For
example, ‘m/s s/day’ is equivalent to ‘m / s s day’ and has dimensions of length per time
cubed. Similarly, ‘1/2 meter’ refers to a unit of reciprocal length equivalent to 0.5/meter,
perhaps not what you would intend if you entered that expression. The get a half meter
you would need to use parentheses: ‘(1/2) meter’. The ‘¥’ operator is convenient for
multiplying a sequence of quotients. For example, ‘m/s * s/day’ is equivalent to ‘m/day’.
Similarly, you could write ‘1/2 * meter’ to get half a meter.

The units program supports another option for numerical fractions: you can indicate
division of numbers with the vertical bar (‘1’), so if you wanted half a meter you could write
‘1|2 meter’. You cannot use the vertical bar to indicate division of non-numerical units
(e.g., ‘m|s’ results in an error message).

(~

Powers of units can be specified using the character, as shown in the following ex-
ample, or by simple concatenation of a unit and its exponent: ‘cm3’ is equivalent to ‘cm~3’;
if the exponent is more than one digit, the ‘*’ is required. You can also use ‘**’ as an
exponent operator.

You have: cm”3

You want: gallons
* 0.00026417205
/ 3785.4118

Concatenation only works with a single unit name: if you write ‘(m/s)2’, units will treat
it as multiplication by 2. When a unit includes a prefix, exponent operators apply to the
combination, so ‘centimeter3’ gives cubic centimeters. If you separate the prefix from the
unit with any multiplication operator (e.g., ‘centi meter~3’), the prefix is treated as a sep-
arate unit, so the exponent applies only to the unit without the prefix. The second example
is equivalent to ‘centi * (meter~3)’, and gives a hundredth of a cubic meter, not a cubic
centimeter. The units program is limited internally to products of 99 units; accordingly,
expressions like ‘meter~100’ or ‘joule~34’ (represented internally as ‘kg~34 m~68 / s~68’)
will fail.

The ‘|’ operator has the highest precedence, so you can write the square root of two
thirds as ‘2|1371]2’. The ‘~’ operator has the second highest precedence, and is evaluated
right to left, as usual:

You have: 5 x 27372
You want:
Definition: 2560

Units Conversion 8

With a dimensionless base unit, any dimensionless exponent is meaningful (e.g.,
‘pi~exp(2.371)’). Even though angle is sometimes treated as dimensionless, exponents
cannot have dimensions of angle:

You have: 2°radian

Exponent not dimensionless

If the base unit is not dimensionless, the exponent must be a rational number p/q, and the
dimension of the unit must be a power of q, so ‘gallon~2|3’ works but ‘acre~2]|3’ fails.
An exponent using the slash (‘/’) operator (e.g., ‘gallon~(2/3)’) is also acceptable; the
parentheses are needed because the precedence of ‘~’ is higher than that of ¢//’. Since units
cannot represent dimensions with exponents greater than 99, a fully reduced exponent must
have g < 100. When raising a non-dimensionless unit to a power, units attempts to convert
a decimal exponent to a rational number with g < 100. If this is not possible units displays
an error message:

You have: ft~1.234
Base unit not dimensionless; rational exponent required

A decimal exponent must match its rational representation to machine precision, so
‘acre”1.5” works but ‘gallon”~0.666" does not.

5.2 Sums and Differences of Units

You may sometimes want to add values of different units that are outside the SI. You may
also wish to use units as a calculator that keeps track of units. Sums of conformable units
are written with the ‘+’ character, and differences with the ‘-’ character.

You have: 2 hours + 23 minutes + 32 seconds
You want: seconds

* 8612

/ 0.00011611705

You have: 12 ft + 3 in
You want: cm

* 373.38

/ 0.0026782366

You have: 2 btu + 450 ft 1bf
You want: btu

* 2.5782804

/ 0.38785542

The expressions that are added or subtracted must reduce to identical expressions in prim-
itive units, or an error message will be displayed:

You have: 12 printerspoint - 4 heredium

-~

Illegal sum of non-conformable units

As usual, the precedence for ‘+’ and ‘-’ is lower than that of the other operators. A fractional
quantity such as 2 1/2 cups can be given as ‘(2+1]2) cups’; the parentheses are necessary
because multiplication has higher precedence than addition. If you omit the parentheses,
units attempts to add ‘2’ and ‘1|2 cups’, and you get an error message:

Units Conversion 9

You have: 2+1|2 cups

Illegal sum or difference of non-conformable units

The expression could also be correctly written as ‘(2+1/2) cups’. If you write ‘2 112 cups’
the space is interpreted as multiplication so the result is the same as ‘1 cup’.

The ‘+’ and ‘-’ characters sometimes appears in exponents like ‘3.43e+8’. This leads to
an ambiguity in an expression like ‘3e+2 yC’. The unit ‘e’ is a small unit of charge, so this
can be regarded as equivalent to ‘(3e+2) yC’ or ‘(3 e)+(2 yC)’. This ambiguity is resolved
by always interpreting ‘+’ and ‘-’ as part of an exponent if possible.

5.3 Numbers as Units

For units, numbers are just another kind of unit. They can appear as many times as you
like and in any order in a unit expression. For example, to find the volume of a box that is
2 ft by 3 ft by 12 ft in steres, you could do the following;:

You have: 2 ft 3 ft 12 ft
You want: stere

* 2.038813

/ 0.49048148

You have: $ 5 / yard
You want: cents / inch
* 13.888889
/ 0.072

And the second example shows how the dollar sign in the units conversion can precede the
five. Be careful: units will interpret ‘$5’ with no space as equivalent to ‘dollar~5’.

5.4 Built-in Functions

Several built-in functions are provided: ‘sin’, ‘cos’, ‘tan’, ‘In’, ‘log’, ‘log2’, ‘exp’, ‘acos’,
‘atan’ and ‘asin’. The ‘sin’, ‘cos’, and ‘tan’ functions require either a dimensionless
argument or an argument with dimensions of angle.

You have: sin(30 degrees)
You want:
Definition: 0.5

You have: sin(pi/2)
You want:
Definition: 1

You have: sin(3 kg)

Unit not dimensionless

The other functions on the list require dimensionless arguments. The inverse trigonometric
functions return arguments with dimensions of angle.

Units Conversion 10

If you wish to take roots of units, you may use the ‘sqrt’ or ‘cuberoot’ functions. These
functions require that the argument have the appropriate root. You can obtain higher roots
by using fractional exponents:

You have: sqrt(acre)
You want: feet

* 208.71074

/ 0.0047913202

You have: (400 W/m~2 / stefanboltzmann)~(1/4)
You have:
Definition: 289.80882 K

You have: cuberoot (hectare)

Unit not a root

5.5 Previous Result

You can insert the result of the previous conversion using the underscore (‘_’). It is useful
when you want to convert the same input to several different units, for example

You have: 2.3 tonrefrigeration
You want: btu/hr
* 27600
/ 3.6231884e-005
You have: _
You want: kW
* 8.0887615
/ 0.12362832

Suppose you want to do some deep frying that requires an oil depth of 2 inches. You have
1/2 gallon of oil, and want to know the largest-diameter pan that will maintain the required
depth. The nonlinear unit ‘circlearea’ gives the radius of the circle (see Section 6.2 [Other
Nonlinear Units], page 14, for a more detailed description) in SI units; you want the diameter
in inches:

You have: 1[/2 gallon / 2 in
You want: circlearea
0.10890173 m
You have: 2 _
You want: in
* 8.5749393
/ 0.1166189

In most cases, surrounding white space is optional, so the previous example could have used
*2_7. If < follows a non-numerical unit symbol, however, the space is required:

You have: m_

Parse error

Units Conversion 11

When ‘_’ is followed by a digit, the operation is multiplication rather than exponentiation,
so that ‘_2’, is equivalent to ‘_ * 2’ rather than ‘_"2’.

You can use the ‘_’ symbol any number of times; for example,

You have: m
You want:
Definition: 1 m
You have:
You want:

Definition: 1 m"™2
Using ‘_’ before a conversion has been performed (e.g., immediately after invocation) gen-
erates an error:

You have: _
No previous result; '_' not set
Accordingly, ‘_’ serves no purpose when units is invoked non-interactively.

If units is invoked with the --verbose option (see Chapter 9 [Invoking Units], page 20),
the value of ‘_’ is not expanded:

You have: mile
You want: ft

mile = 5280 ft
mile = (1 / 0.00018939394) ft
You have: _
You want: m
= 1609.344 m

(1 / 0.00062137119) m
You can give ‘_’ at the ‘You want:’ prompt, but it usually is not very useful.

5.6 Complicated Unit Expressions

The units program is especially helpful in ensuring accuracy and dimensional consistency
when converting lengthy unit expressions. For example, one form of the Darcy—Weisbach
fluid-flow equation is

2
ra
where AP is the pressure drop, p is the mass density, f is the (dimensionless) friction factor,
L is the length of the pipe, @ is the volumetric flow rate, and d is the pipe diameter. It
might be desired to have the equation in the form

8

2

Q
AP = AipfL7

that accepted the user’s normal units; for typical units used in the US, the required con-
version could be something like
You have: (8/pi~2) (1bm/ft~3)ft(£ft"3/s)~2(1/in"5)
You want: psi
* 43.533969
/ 0.022970568

Units Conversion 12

The parentheses allow individual terms in the expression to be entered naturally, as they
might be read from the formula. Alternatively, the multiplication could be done with the
“*” rather than a space; then parentheses are needed only around ‘ft~3/s’ because of its
exponent:

You have: 8/pi~2 * lbm/ft"3 * ft * (£t°3/s)"2 /in"5
You want: psi

* 43.533969

/ 0.022970568

Without parentheses, and using spaces for multiplication, the previous conversion would
need to be entered as

You have: 8 1b ft ft~3 ft°3 / pi~2 ft"3 s72 in"5
You want: psi

* 43.533969

/ 0.022970568

5.7 Backwards Compatibility: ‘*x’> and ‘-’

The original units assigned multiplication a higher precedence than division using the slash.
This differs from the usual precedence rules, which give multiplication and division equal
precedence, and can be confusing for people who think of units as a calculator.

The star operator (‘*’) included in this units program has, by default, the same prece-
dence as division, and hence follows the usual precedence rules. For backwards compatibility
you can invoke units with the ——oldstar option. Then ‘*’ has a higher precedence than
division, and the same precedence as multiplication using the space.

Historically, the hyphen (‘-’) has been used in technical publications to indicate products
of units, and the original units program treated it as a multiplication operator. Because
units provides several other ways to obtain unit products, and because ‘-’ is a subtrac-
tion operator in general algebraic expressions, units treats the binary ‘-’ as a subtraction
operator by default. For backwards compatibility use the ——product option, which causes
units to treat the binary ‘-’ operator as a product operator. When ‘-’ is a multiplica-
tion operator it has the same precedence as multiplication with a space, giving it a higher
precedence than division.

When ‘-’ is used as a unary operator it negates its operand. Regardless of the units
options, if ‘=’ appears after ‘(" or after ‘+’ then it will act as a negation operator. So you
can always compute 20 degrees minus 12 minutes by entering ‘20 degrees + -12 arcmin’.
You must use this construction when you define new units because you cannot know what
options will be in force when your definition is processed.

6 Nonlinear Unit Conversions

Nonlinear units are represented using functional notation. They make possible nonlinear
unit conversions such as temperature.

Units Conversion 13

6.1 Temperature Conversions

Conversions between temperatures are different from linear conversions between tempera-
ture increments—see the example below. The absolute temperature conversions are handled
by units starting with ‘temp’, and you must use functional notation. The temperature-
increment conversions are done using units starting with ‘deg’ and they do not require
functional notation.

You have: tempF(45)
You want: tempC
7.2222222

You have: 45 degF
You want: degC

* 25

/ 0.04

Think of ‘tempF (x)’ not as a function but as a notation that indicates that x should have
units of ‘tempF’ attached to it. See Section 10.3 [Defining Nonlinear Units|, page 27. The
first conversion shows that if it’s 45 degrees Fahrenheit outside, it’s 7.2 degrees Celsius. The
second conversion indicates that a change of 45 degrees Fahrenheit corresponds to a change
of 25 degrees Celsius. The conversion from ‘tempF (x)’ is to absolute temperature, so that

You have: tempF (45)
You want: degR

* 504.67

/ 0.0019814929

gives the same result as

You have: tempF(45)
You want: tempR

* 504.67

/ 0.0019814929

But if you convert ‘tempF(x)’ to ‘degC’, the output is probably not what you expect:

You have: tempF(45)
You want: degC

* 280.37222

/ 0.0035666871

The result is the temperature in K, because ‘degC’ is defined as ‘K’, the Kelvin. For consis-
tent results, use the ‘tempX’ units when converting to a temperature rather than converting
a temperature increment.

The ‘tempC()’ and ‘tempF ()’ definitions are limited to positive absolute temperatures,
and giving a value that would result in a negative absolute temperature generates an error
message:

You have: tempC(-275)

Argument of function outside domain

Units Conversion 14

6.2 Other Nonlinear Units

Some other examples of nonlinear units are numerous different ring sizes and wire gauges,
the grit sizes used for abrasives, the decibel scale, shoe size, scales for the density of sugar
(e.g., baume). The standard data file also supplies units for computing the area of a
circle and the volume of a sphere. See the standard units data file for more details. Wire
gauges with multiple zeroes are signified using negative numbers where two zeroes is ‘-1’
Alternatively, you can use the synonyms ‘g00’, ‘g000’, and so on that are defined in the
standard units data file.

You have: wiregauge(11)
You want: inches
* 0.090742002
/ 11.020255

You have: brwiregauge(g00)
You want: inches

* 0.348

/ 2.8735632

You have: 1 mm
You want: wiregauge
18.201919

You have: grit_P(600)
You want: grit_ansicoated
342.76923

The last example shows the conversion from P graded sand paper, which is the European
standard and may be marked “P600” on the back, to the USA standard.

You can compute the area of a circle using the nonlinear unit, ‘circlearea’. You can
also do this using the circularinch or circleinch. The next example shows two ways to
compute the area of a circle with a five inch radius and one way to compute the volume of
a sphere with a radius of one meter.

You have: circlearea(5 in)
You want: in2

* 78.539816

/ 0.012732395

You have: 1072 circleinch
You want: in2

* 78.539816

/ 0.012732395

You have: spherevol(meter)
You want: ft3

* 147.92573

/ 0.0067601492

Units Conversion 15

The inverse of a nonlinear conversion is indicated by prefixing a tilde (‘~’) to the nonlinear
unit name:

You have: “wiregauge(0.090742002 inches)
You want:
Definition: 11
You can give a nonlinear unit definition without an argument or parentheses, and press
Enter at the ‘You want:’ prompt to get the definition of a nonlinear unit; if the definition
is not valid for all real numbers, the range of validity is also given. If the definition requires
specific units this information is also displayed:

You have: tempC
Definition: tempC(x) = x K + stdtemp
defined for x >= -273.15
You have: “tempC
Definition: “tempC(tempC) = (tempC +(-stdtemp))/K
defined for tempC >= 0 K
You have: circlearea
Definition: circlearea(r) = pi r"2
r has units m

To see the definition of the inverse use the ‘~’ notation. In this case the parameter in

the functional definition will usually be the name of the unit. Note that the inverse for
‘tempC’ shows that it requires units of ‘K’ in the specification of the allowed range of values.
Nonlinear unit conversions are described in more detail in Section 10.3 [Defining Nonlinear
Units], page 27.

7 Unit Lists: Conversion to Sums of Units

Outside of the SI, it is sometimes desirable to convert a single unit to a sum of units—
for example, feet to feet plus inches. The conversion from sums of units was described in
Section 5.2 [Sums and Differences of Units|, page 8, and is a simple matter of adding the
units with the ‘+’ sign:
You have: 12 ft + 3 in + 3|8 in
You want: ft
*x 12.28125
/ 0.081424936

Although you can similarly write a sum of units to convert to, the result will not be the
conversion to the units in the sum, but rather the conversion to the particular sum that
you have entered:

You have: 12.28125 ft

You want: ft + in + 1|8 in
* 11.228571
/ 0.089058524

The unit expression given at the ‘You want:’ prompt is equivalent to asking for conversion
to multiples of ‘1 ft + 1 in + 1|8 in’, which is 1.09375 ft, so the conversion in the previous
example is equivalent to

Units Conversion 16

You have: 12.28125 ft
You want: 1.09375 ft
x 11.228571
/ 0.089058524

In converting to a sum of units like miles, feet and inches, you typically want the largest
integral value for the first unit, followed by the largest integral value for the next, and the
remainder converted to the last unit. You can do this conversion easily with units using
a special syntax for lists of units. You must list the desired units in order from largest to
smallest, separated by the semicolon (‘;’) character:

You have: 12.28125 ft
You want: ft;in;118 in
12 ft + 3 in + 3|8 in

The conversion always gives integer coefficients on the units in the list, except possibly the
last unit when the conversion is not exact:

You have: 12.28126 ft
You want: ft;in;118 in
12 ft + 3 in + 3.00096 * 1|8 in

The order in which you list the units is important:

You have: 3 kg
You want: oz;1b
105 oz + 0.051367866 1b

You have: 3 kg
You want: 1lb;oz
6 1b + 9.8218858 oz

Listing ounces before pounds produces a technically correct result, but not a very useful
one. You must list the units in descending order of size in order to get the most useful
result.

3

Ending a unit list with the separator ‘;’ has the same effect as repeating the last unit
on the list, so ‘ft;in;118 in;’ is equivalent to ‘ft;in;1|8 in;118 in’. With the example
above, this gives

You have: 12.28126 ft
You want: ft;in;1(8 in;
12 ft + 3 in + 3|8 in + 0.00096 * 1|8 in

in effect separating the integer and fractional parts of the coefficient for the last unit. If you
instead prefer to round the last coefficient to an integer you can do this with the --round
(-r) option. With the previous example, the result is

You have: 12.28126 ft
You want: ft;in;118 in
12 ft + 3 in + 3|8 in (rounded down to nearest 1|8 in)

When you use the -r option, repeating the last unit on the list has no effect (e.g., ‘ft;in;1(8
in;1|8 in’ is equivalent to ‘ft;in; 118 in’), and hence neither does ending a list with a ;.
With a single unit and the -r option, a terminal ‘;’ does have an effect: it causes units to
treat the single unit as a list and produce a rounded value for the single unit. Without the

Units Conversion 17

extra ‘;’, the -r option has no effect on single unit conversions. This example shows the
output using the -r option:

You have: 12.28126 ft
You want: in

* 147.37512

/ 0.0067854058

You have: 12.28126 ft
You want: in;
147 in (rounded down to nearest in)

Each unit that appears in the list must be conformable with the first unit on the list, and
of course the listed units must also be conformable with the unit that you enter at the
‘You have:’ prompt.

You have: meter
You want: ft;kg

conformability error
ft = 0.3048 m
kg 1 kg

You have: meter

You want: 1b;oz

conformability error
1m
0.45359237 kg

In the first case, units reports the disagreement between units appearing on the list. In
the second case, units reports disagreement between the unit you entered and the desired
conversion. This conformability error is based on the first unit on the unit list.

Other common candidates for conversion to sums of units are angles and time:

You have: 23.437754 deg
You want; deg;arcmin;arcsec
23 deg + 26 arcmin + 15.9144 arcsec

You have: 7.2319 hr
You want: hr;min;sec
7 hr + 13 min + 54.84 sec

In North America, recipes for cooking typically measure ingredients by volume, and use
units that are not always convenient multiples of each other. Suppose that you have a
recipe for 6 and you wish to make a portion for 1. If the recipe calls for 2 1/2 cups of an
ingredient, you might wish to know the measurements in terms of measuring devices you
have available, you could use units and enter

You have: (2+1]2) cup / 6
You want: cup;112 cup;1|3 cup;1|4 cup;tbsp;tsp;112 tsp;114 tsp
113 cup + 1 tbsp + 1 tsp

Units Conversion 18

By default, if a unit in a list begins with fraction of the form 1|x and its multiplier is
an integer, the fraction is given as the product of the multiplier and the numerator; for
example,

You have: 12.28125 ft
You want: ft;in;1|8 in;
12 ft + 3 in + 3|8 in

In many cases, such as the example above, this is what is wanted, but sometimes it is not.
For example, a cooking recipe for 6 might call for 5 1/4 cup of an ingredient, but you want
a portion for 2, and your 1-cup measure is not available; you might try

You have: (5+114) cup / 3
You want: 1|2 cup;1!3 cup;1l4 cup
312 cup + 114 cup

This result might be fine for a baker who has a 1 1/2-cup measure (and recognizes the
equivalence), but it may not be as useful to someone with more limited set of measures,
who does want to do additional calculations, and only wants to know “How many 1/2-
cup measures to I need to add?” After all, that’s what was actually asked. With the
--show-factor option, the factor will not be combined with a unity numerator, so that
you get

You have: (5+1[4) cup / 3

You want: 12 cup;113 cup;1l4 cup

3 % 1|2 cup + 114 cup

A user-specified fractional unit with a numerator other than 1 is never overridden, however—
if a unit list specifies ‘3|4 cup;112 cup’, a result equivalent to 1 1/2 cups will always be
shown as ‘2 * 3|4 cup’ whether or not the -—show-factor option is given.

Some applications for unit lists may be less obvious. Suppose that you have a postal
scale and wish to ensure that it’s accurate at 1 oz, but have only metric calibration weights.
You might try

You have: 1 oz
You want: 100 g;50 g; 20 g;10 g;5 g;2 g;1 g;
20g+5g+2g+1g+0.34952312 x 1 g
You might then place one each of the 20 g, 5 g, 2 g, and 1 g weights on the scale and hope
that it indicates close to
You have: 20 g+ 5 g+ 2 g+ 1 g
You want: oz;
0.98767093 oz

Appending ‘;’ to ‘oz’ forces a one-line display that includes the unit; here the integer part
of the result is zero, so it is not displayed.

A unit list such as
cup;112 cup;113 cup;114 cup;tbsp;tsp;1|2 tsp;114 tsp

can be tedious to enter. The units program provides shorthand names for some common
combinations:

hms hours, minutes, seconds
dms angle: degrees, minutes, seconds

Units Conversion 19

time years, days, hours, minutes and seconds
usvol US cooking volume: cups and smaller

Using these shorthands, or unit list aliases, you can do the following conversions:

You have: anomalisticyear
You want: time
1 year + 25 min + 3.4653216 sec
You have: 1|6 cup
You want: usvol
2 tbsp + 2 tsp

You cannot combine a unit list alias with other units: it must appear alone at the
‘You want:’ prompt.

You can display the definition of a unit list alias by entering it at the ‘You have:’ prompt:

You have: dms
Definition: unit list, deg;arcmin;arcsec

When you specify compact output with —-compact, --terse or -t and perform conversion
to a unit list, units lists the conversion factors for each unit in the list, separated by
semicolons.

You have: year
You want: day;min;sec
365;348;45.974678

Unlike the case of regular output, zeros are included in this output list:

You have: liter
You want: cup;1|2 cup;1|4 cup;tbsp
4;0;0;3.6280454

8 Logging Calculations

The --log option allows you to save the results of calculations in a file; this can be useful
if you need a permanent record of your work. For example, the fluid-flow conversion in
Section 5.6 [Complicated Unit Expressions|, page 11, is lengthy, and if you were to use
it in designing a piping system, you might want a record of it for the project file. If the
interactive session

Conversion factor Al for pressure drop
dP = Al rho £ L Q°2/4°5
You have: (8/pi~2) (lbm/ft"3)ft(£ft"3/s)"2(1/in"5) # Input units
You want: psi
* 43.533969
/ 0.022970568

were logged, the log file would contain

Units Conversion 20

Log started Fri Oct 02 15:55:35 2015

Conversion factor Al for pressure drop
dP = Al rho £ L Q°2/d"5
From: (8/pi~2) (1bm/ft~3)ft(ft~3/s)"2(1/in"5) # Input units
To: psi
* 43.533969
/ 0.022970568
The time is written to the log file when the file is opened.

The use of comments can help clarify the meaning of calculations for the log. The
log includes conformability errors between the units at the ‘You have:’ and ‘You want:’
prompts, but not other errors, including lack of conformability of items in sums or differences
or among items in a unit list. For example, a conversion between zenith angle and elevation
angle could involve

You have: 90 deg - (5 deg + 22 min + 9 sec)
Illegal sum or difference of non-conformable units
You have: 90 deg - (5 deg + 22 arcmin + 9 arcsec)
You want: dms
84 deg + 37 arcmin + 51 arcsec
You have: _
You want: deg
* 84.630833
/ 0.011816024
You have:
The log file would contain
From: 90 deg - (5 deg + 22 arcmin + 9 arcsec)
To: deg;arcmin;arcsec
84 deg + 37 arcmin + 51 arcsec
From: _
To: deg
* 84.630833
/ 0.011816024
The initial entry error (forgetting that minutes have dimension of time, and that arcminutes
must be used for dimensions of angle) does not appear in the output. When converting to
a unit list alias, units expands the alias in the log file.
The ‘From:’ and ‘To:’ tags are written to the log file even if the -~—quiet option is given.
If the log file exists when units is invoked, the new results are appended to the log file
The time is written to the log file each time the file is opened. The --1log option is ignored
when units is used non-interactively.

9 Invoking units

You invoke units like this:

units [options] [from-unit [to-unit]]

Units Conversion 21

If the from-unit and to-unit are omitted, the program will use interactive prompts to de-
termine which conversions to perform. See Chapter 2 [Interactive Use], page 1. If both
from-unit and to-unit are given, units will print the result of that single conversion and
then exit. If only from-unit appears on the command line, units will display the definition
of that unit and exit. Units specified on the command line may need to be quoted to pro-
tect them from shell interpretation and to group them into two arguments. See Chapter 3
[Command Line Use|, page 4.

The default behavior of units can be changed by various options given on the command
line. In most cases, the options may be given in either short form (a single ‘-’ followed by a
single character) or long form (‘--’ followed by a word or hyphen-separated words). Short-
form options are cryptic but require less typing; long-form options require more typing but
are more explanatory and may be more mnemonic. With long-form options you need only
enter sufficient characters to uniquely identify the option to the program. For example,
‘-—out %f’ works, but ‘--o %f’ fails because units has other long options beginning with
‘o’. However, ‘--q" works because ‘--quiet’ is the only long option beginning with ‘q’.

Some options require arguments to specify a value (e.g., ‘-d 12’ or ‘--digits 127).
Short-form options that do not take arguments may be concatenated (e.g., ‘-erS’ is equiv-
alent to ‘-~e -r -8’); the last option in such a list may be one that takes an argument
(e.g., ‘-ed 12’). With short-form options, the space between an option and its argument
is optional (e.g., ‘-d12’ is equivalent to ‘-d 12’). Long-form options may not be concate-
nated, and the space between a long-form option and its argument is required. Short-form
and long-form options may be intermixed on the command line. Options may be given
in any order, but when incompatible options (e.g., ——output-format and --exponential)
are given in combination, behavior is controlled by the last option given. For example,
‘-0%.12f -e’ gives exponential format with the default eight significant digits).

The following options are available:

--check Check that all units and prefixes defined in the units data file reduce to primitive
units. Print a list of all units that cannot be reduced. Also display some other
diagnostics about suspicious definitions in the units data file. Only definitions
active in the current locale are checked. You should always run units with this
option after modifying a units data file.

—-—check-verbose

—--verbose-check
Like the —--check option, this option prints a list of units that cannot be re-
duced. But to help find unit definitions that cause endless loops, it lists the
units as they are checked. If units hangs, then the last unit to be printed has
a bad definition. Only definitions active in the current locale are checked.

-d ndigits

--digits ndigits
Set the number of significant digits in the output to the value specified (which
must be greater than zero). For example, ‘-d 12’ sets the number of significant
digits to 12. With exponential output units displays one digit to the left of

Units Conversion 22

the decimal point? and eleven digits to